bacteriophage p22
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 7)

H-INDEX

43
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Dominika Houserova ◽  
Yulong Huang ◽  
Kasukurthi Kasukurthi ◽  
Brianna Watters ◽  
Fiza Khan ◽  
...  

Abstract Salmonella Outer Membrane Vesicles (OMVs) were recently shown to inhibit P22 bacteriophage infection. Interestingly, we identify 31 recurrent tRFs abundantly expressed by Salmonella enterica serovar Typhimurium and find these tRFs are highly complementary to known Salmonella enterica-infecting bacteriophage (17 averaging 97.4% complementarity over 22.9 nt) and specifically enriched in S. Typhimurium OMVs. Most notably, tRNA-Thr-CGT-1-1, 44-73, bears 100% complementary over its entire 30 nt length to 29 distinct Salmonella enterica-infecting bacteriophage including P22. Importantly, we find inhibiting this tRF in secreted OMVs improves P22 infectivity in a dose dependent manner whereas raising OMV tRF levels conversely inhibits P22. Furthermore, we find P22 pre-incubation with OMVs isolated from naïve S. Typhimurium, rescues the ability of S. Typhimurium depleted of tRNA-Thr-CGT-1-1, 44-73 tRF to defend against P22. Collectively, these experiments confirm tRFs secreted in S. Typhimurium OMVs are directly involved with and required for the ability of OMVs to defend against bacteriophage predation. As we find the majority of OMV tRFs are highly complementary to an array of known Salmonella enterica-infecting bacteriophage, we suggest OMV tRFs may primarily function as a broadly acting, previously uncharacterized ancient antiviral defense.



2021 ◽  
Author(s):  
Dominika Houserova ◽  
Yulong Huang ◽  
Mohan V. Kasukurthi ◽  
Brianna C. Watters ◽  
Fiza F. Khan ◽  
...  

Salmonella Outer Membrane Vesicles (OMVs) were recently shown to inhibit P22 bacteriophage infection. Furthermore, despite there being several published reports now independently describing (1) the marked prevalence of tRFs within secreted vesicle transcriptomes and (2) roles for specific tRFs in facilitating/inhibiting viral replication, there have been no examinations of the effects of vesicle-secreted tRFs on viral infection reported to date. Notably, while specific tRFs have been reported in a number of bacteria, the tRFs expressed by salmonellae have not been previously characterized. As such, we recently screened small RNA-seq datasets for the presence of recurrent, specifically excised tRFs and identified 31 recurrent, relatively abundant tRFs expressed by Salmonella enterica serovar Typhimurium (SL1344). Furthermore, we find S. Typhimurium OMVs contain significant levels of tRFs highly complementary to known Salmonella enterica-infecting bacteriophage with 17 of 31 tRFs bearing marked complementarity to at least one known Salmonella enterica-infecting phage (averaging 97.4% complementarity over 22.9 nt). Most notably, tRNA-Thr-CGT-1-1, 44-73, bears 100% sequence complementary over its entire 30 nt length to 29 distinct, annotated Salmonella enterica-infecting bacteriophage including P22. Importantly, we find inhibiting this tRF in secreted OMVs improves P22 infectivity in a dose dependent manner whereas raising OMV tRF levels conversely inhibits P22 infectivity. Furthermore, we find P22 phage pre-incubation with OMVs isolated from naive, control SL1344 S. Typhimurium, successfully rescues the ability of S. Typhimurium transformed with a specific tRNA-Thr-CGT-1-1, 44-73 tRF inhibitor to defend against P22. Collectively, these experiments confirm tRFs secreted in S. Typhimurium OMVs are directly involved with and required for the ability of OMVs to defend against bacteriophage predation. As we find the majority of OMV tRFs are highly complementary to an array of known Salmonella enterica-infecting bacteriophage, we suggest OMV tRFs may primarily function as a broadly acting, previously uncharacterized innate antiviral defense.



Author(s):  
Eugene E. Kulikov ◽  
Alla K. Golomidova ◽  
Alexandr D. Efimov ◽  
Ilya S. Belalov ◽  
Maria A. Letarova ◽  
...  

Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. Up to our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces on the indigenous equine E. coli 4s strain. It is a podovirus, related to the Lederbergvirus genus (including the well–characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT retain the ability to infect E. coli 4s (Hf4s) lysogens. Importance: The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions on the ecology of microbial viruses in mammal intestinal ecosystems.



ACS Catalysis ◽  
2021 ◽  
pp. 10487-10493
Author(s):  
Yan-Qing Zhang ◽  
Tao-Tao Feng ◽  
Yu-Fei Cao ◽  
Xiao-Yan Zhang ◽  
Tao Wang ◽  
...  


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1504
Author(s):  
Justin C. Leavitt ◽  
Eddie B. Gilcrease ◽  
Brianna M. Woodbury ◽  
Carolyn M. Teschke ◽  
Sherwood R. Casjens

Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ekaterina Selivanovitch ◽  
Benjamin LaFrance ◽  
Trevor Douglas

AbstractMolecular communication across physical barriers requires pores to connect the environments on either side and discriminate between the diffusants. Here we use porous virus-like particles (VLPs) derived from bacteriophage P22 to investigate the range of molecule sizes able to gain access to its interior. Although there are cryo-EM models of the VLP, they may not accurately depict the parameters of the molecules able to pass across the pores due to the dynamic nature of the P22 particles in the solution. After encapsulating the enzyme AdhD within the P22 VLPs, we use a redox reaction involving PAMAM dendrimer modified NADH/NAD+ to examine the size and charge limitations of molecules entering P22. Utilizing the three different accessible morphologies of the P22 particles, we determine the effective pore sizes of each and demonstrate that negatively charged substrates diffuse across more readily when compared to those that are neutral, despite the negatively charge exterior of the particles.



Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 604
Author(s):  
Cristina Díaz-Barriga ◽  
Francisca Villanueva-Flores ◽  
Katrin Quester ◽  
Andrés Zárate-Romero ◽  
Ruben Dario Cadena-Nava ◽  
...  

Asparaginase (ASNase) is a biopharmaceutical for Acute Lymphoblastic Leukemia (ALL) treatment. However, it shows undesirable side effects such as short lifetimes, susceptibility to proteases, and immunogenicity. Here, ASNase encapsidation was genetically directed in bacteriophage P22-based virus-like particles (VLPs) (ASNase-P22 nanoreactors) as a strategy to overcome these challenges. ASNase-P22 was composed of 58.4 ± 7.9% of coat protein and 41.6 ± 8.1% of tetrameric ASNase. Km and Kcat values of ASNase-P22 were 15- and 2-fold higher than those obtained for the free enzyme, respectively. Resulting Kcat/Km value was 2.19 × 105 M−1 s−1. ASNase-P22 showed an aggregation of 60% of the volume sample when incubated at 37 °C for 12 days. In comparison, commercial asparaginase was completely aggregated under the same conditions. ASNase-P22 was stable for up to 24 h at 37 °C, independent of the presence of human blood serum (HBS) or whether ASNase-P22 nanoreactors were uncoated or PEGylated. Finally, we found that ASNase-P22 caused cytotoxicity in the leukemic cell line MOLT-4 in a concentration dependent manner. To our knowledge, this is the first work where ASNase is encapsulated inside of VLPs, as a promising alternative to fight ALL.



Biochemistry ◽  
2020 ◽  
Vol 59 (51) ◽  
pp. 4845-4855
Author(s):  
Ulrich Baxa ◽  
Andrej Weintraub ◽  
Robert Seckler


2020 ◽  
Vol 11 ◽  
Author(s):  
Mareike S. Stephan ◽  
Nina K. Broeker ◽  
Athanasios Saragliadis ◽  
Norbert Roos ◽  
Dirk Linke ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document