shallow and deep networks
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Doris Voina ◽  
Eric Shea-Brown ◽  
Stefan Mihalas

Humans and other animals navigate different landscapes and environments with ease, a feat that requires the brain's ability to rapidly and accurately adapt to different visual domains, generalizing across contexts/backgrounds. Despite recent progress in deep learning applied to classification and detection in the presence of multiple confounds including contextual ones, there remain important challenges to address regarding how networks can perform context-dependent computations and how contextually-invariant visual concepts are formed. For instance, recent studies have shown artificial networks that repeatedly misclassified familiar objects set on new backgrounds, e.g. incorrectly labeling known animals when they appeared in a different setting. Here, we show how a bio-inspired network motif can explicitly address this issue. We do this using a novel dataset which can be used as a benchmark for future studies probing invariance to backgrounds. The dataset consists of MNIST digits of varying transparency, set on one of two backgrounds with different statistics: a Gaussian noise or a more naturalistic background from the CIFAR-10 dataset. We use this dataset to learn digit classification when contexts are shown sequentially, and find that both shallow and deep networks have sharply decreased performance when returning to the first background after experience learning the second -- the catastrophic forgetting phenomenon in continual learning. To overcome this, we propose an architecture with additional ``switching'' units that are activated in the presence of a new background. We find that the switching network can learn the new context even with very few switching units, while maintaining the performance in the previous context -- but that they must be recurrently connected to network layers. When the task is difficult due to high transparency, the switching network trained on both contexts outperforms networks without switching trained on only one context. The switching mechanism leads to sparser activation patterns, and we provide intuition for why this helps to solve the task. We compare our architecture with other prominent learning methods, and find that elastic weight consolidation is not successful in our setting, while progressive nets are more complex but less effective. Our study therefore shows how a bio-inspired architectural motif can contribute to task generalization across context.


2021 ◽  
Vol 11 (1) ◽  
pp. 411-422
Author(s):  
Jozsef Suto

Abstract In the last decade, many researchers applied shallow and deep networks for human activity recognition (HAR). Currently, the trending research line in HAR is applying deep learning to extract features and classify activities from raw data. However, we observed that, authors of previous studies have not performed an efficient hyperparameter search on their artificial neural network (shallow or deep)-based classifier. Therefore, in this article, we demonstrate the effect of the random and Bayesian parameter search on a shallow neural network using five HAR databases. The result of this work shows that a shallow neural network with correct parameter optimization can achieve similar or even better recognition accuracy than the previous best deep classifier(s) on all databases. In addition, we draw conclusions about the advantages and disadvantages of the two hyperparameter search techniques according to the results.


Author(s):  
Yuchen Guo ◽  
Guiguang Ding ◽  
Jungong Han ◽  
Sicheng Zhao ◽  
Bin Wang

Recognizing unseen classes is an important task for real-world applications, due to: 1) it is common that some classes in reality have no labeled image exemplar for training; and 2) novel classes emerge rapidly. Recently, to address this task many zero-shot learning (ZSL) approaches have been proposed where explicit linear scores, like inner product score, are employed to measure the similarity between a class and an image. We argue that explicit linear scoring (ELS) seems too weak to capture complicated image-class correspondence. We propose a simple yet effective framework, called Implicit Non-linear Similarity Scoring (ICINESS). In particular, we train a scoring network which uses image and class features as input, fuses them by hidden layers, and outputs the similarity. Based on the universal approximation theorem, it can approximate the true similarity function between images and classes if a proper structure is used in an implicit non-linear way, which is more flexible and powerful. With ICINESS framework, we implement ZSL algorithms by shallow and deep networks, which yield consistently superior results.


Sign in / Sign up

Export Citation Format

Share Document