rational generating functions
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Katharina Jochemko

Abstract We study rational generating functions of sequences $\{a_n\}_{n\geq 0}$ that agree with a polynomial and investigate symmetric decompositions of the numerator polynomial for subsequences $\{a_{rn}\}_{n\geq 0}$. We prove that if the numerator polynomial for $\{a_n\}_{n\geq 0}$ is of degree $s$ and its coefficients satisfy a set of natural linear inequalities, then the symmetric decomposition of the numerator for $\{a_{rn}\}_{n\geq 0}$ is real-rooted whenever $r\geq \max \{s,d+1-s\}$. Moreover, if the numerator polynomial for $\{a_n\}_{n\geq 0}$ is symmetric, then we show that the symmetric decomposition for $\{a_{rn}\}_{n\geq 0}$ is interlacing. We apply our results to Ehrhart series of lattice polytopes. In particular, we obtain that the $h^\ast $-polynomial of every dilation of a $d$-dimensional lattice polytope of degree $s$ has a real-rooted symmetric decomposition whenever the dilation factor $r$ satisfies $r\geq \max \{s,d+1-s\}$. Moreover, if the polytope is Gorenstein, then this decomposition is interlacing.



Author(s):  
Seon-Hong Kim ◽  
Kenneth B. Stolarsky

We insert additional variables into Warnaar’s [Formula: see text]-analogue of Nicomachus’ identity and other related identities, and compute discriminants with respect to [Formula: see text]. Factorization of these discriminants reveals pairs of partitions that conjecturally relate in the manner of Wheatstone. The factorization also yields, conjecturally, families of polynomials with relations to various Molien series, remarkable rational generating functions, and notable root distributions. For a [Formula: see text]-analogue of Nicomachus’ identity produced by Cigler, we provide proofs of the partition properties. We also state and in part prove tight inequalities for the elements of two interlacing sequences that led us to the “twin” of Warnaar’s [Formula: see text]-analogue.



2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Torin Greenwood

International audience In this paper, we use the multivariate analytic techniques of Pemantle and Wilson to find asymptotic for- mulae for the coefficients of a broad class of multivariate generating functions with algebraic singularities. Flajolet and Odlyzko (1990) analyzed the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in both cases by immediately reducing the multivariate case to the univariate case. Pemantle and Wilson (2013) outlined new multivariate analytic techniques and used them to analyze the coefficients of rational generating functions.





2015 ◽  
Vol 80 (2) ◽  
pp. 433-449 ◽  
Author(s):  
KEVIN WOODS

AbstractPresburger arithmetic is the first-order theory of the natural numbers with addition (but no multiplication). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, ifp= (p1, . . . ,pn) are a subset of the free variables in a Presburger formula, we can define a counting functiong(p) to be the number of solutions to the formula, for a givenp. We show that every counting function obtained in this way may be represented as, equivalently, either a piecewise quasi-polynomial or a rational generating function. Finally, we translate known computational complexity results into this setting and discuss open directions.



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Velleda Baldoni ◽  
Nicole Berline ◽  
Brandon Dutra ◽  
Matthias Köppe ◽  
Michele Vergne ◽  
...  

International audience For a given sequence $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(\alpha)(t)$ that counts the nonnegative integer solutions of the equation $\alpha_1x_1+\alpha_2 x_2+ \ldots+ \alpha_Nx_N+ \alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(\alpha)(t)$ is a quasipolynomial function of $t$ of degree $N$. In combinatorial number theory this function is known as the $\textit{denumerant}$. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(\alpha)(t)$ as step polynomials of $t$. Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(\alpha)(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Experiments using a $\texttt{MAPLE}$ implementation will be posted separately. Considérons une liste $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ de $N+1$ entiers positifs. Le dénumérant $E(\alpha)(t)$ est lafonction qui compte le nombre de solutions en entiers positifs ou nuls de l’équation $\sum^{N+1}_{i=1}x_i\alpha_i=t$, où $t$ varie dans les entiers positifs ou nuls. Il est bien connu que cette fonction est une fonction quasi-polynomiale de $t$, de degré $N$. Nous donnons un nouvel algorithme qui calcule, pour chaque entier fixé $k$ (mais $N$ n’est pas fixé, les $k+1$ plus hauts coefficients du quasi-polynôme $E(\alpha)(t)$ en termes de fonctions en dents de scie. Notre algorithme utilise la structure d’ensemble partiellement ordonné des pôles de la fonction génératrice de $E(\alpha)(t)$. Les $k+1$ plus hauts coefficients se calculent à l’aide de fonctions génératrices de points entiers dans des cônes polyèdraux de dimension inférieure ou égale à $k$.



Sign in / Sign up

Export Citation Format

Share Document