symmetric decomposition
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Katharina Jochemko

Abstract We study rational generating functions of sequences $\{a_n\}_{n\geq 0}$ that agree with a polynomial and investigate symmetric decompositions of the numerator polynomial for subsequences $\{a_{rn}\}_{n\geq 0}$. We prove that if the numerator polynomial for $\{a_n\}_{n\geq 0}$ is of degree $s$ and its coefficients satisfy a set of natural linear inequalities, then the symmetric decomposition of the numerator for $\{a_{rn}\}_{n\geq 0}$ is real-rooted whenever $r\geq \max \{s,d+1-s\}$. Moreover, if the numerator polynomial for $\{a_n\}_{n\geq 0}$ is symmetric, then we show that the symmetric decomposition for $\{a_{rn}\}_{n\geq 0}$ is interlacing. We apply our results to Ehrhart series of lattice polytopes. In particular, we obtain that the $h^\ast $-polynomial of every dilation of a $d$-dimensional lattice polytope of degree $s$ has a real-rooted symmetric decomposition whenever the dilation factor $r$ satisfies $r\geq \max \{s,d+1-s\}$. Moreover, if the polytope is Gorenstein, then this decomposition is interlacing.


2020 ◽  
Vol 34 (30) ◽  
pp. 2050292
Author(s):  
Xiaopeng Cui ◽  
Yu Shi

Trotter decomposition is the basis of the digital quantum simulation. Asymmetric and symmetric decompositions are used in our GPU demonstration of the digital adiabatic quantum simulations of (2[Formula: see text]+[Formula: see text]1)-dimensional quantum [Formula: see text] lattice gauge theory. The actual errors in Trotter decompositions are investigated as functions of the coupling parameter and the number of Trotter substeps in each step of the variation of coupling parameter. The relative error of energy is shown to be equal to the Trotter error usually defined in terms of the evolution operators. They are much smaller than the order-of-magnitude estimation. The error in the symmetric decomposition is much smaller than that in the asymmetric decomposition. The features of the Trotter errors obtained here are useful in the experimental implementation of digital quantum simulation and its numerical demonstration.


10.37236/9313 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Shi-Mei Ma ◽  
Jun Ma ◽  
Jean Yeh ◽  
Yeong-Nan Yeh

In this paper, we define the $1/k$-Eulerian polynomials of type $B$. Properties of these polynomials, including combinatorial interpretations, recurrence relations and $\gamma$-positivity are studied. In particular, we show that the $1/k$-Eulerian polynomials of type $B$ are $\gamma$-positive when $k>0$. Moreover, we define the $1/k$-derangement polynomials of type $B$, denoted $d_n^B(x;k)$. We show that the polynomials $d_n^B(x;k)$ are bi-$\gamma$-positive when $k\geq 1/2$. In particular, we get a symmetric decomposition of the polynomials $d_n^B(x;1/2)$ in terms of the classical derangement polynomials.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Karl Tuyls ◽  
Julien Pérolat ◽  
Marc Lanctot ◽  
Georg Ostrovski ◽  
Rahul Savani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document