implant density
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 20)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Edward Compton ◽  
Purnendu Gupta ◽  
Jaime A. Gomez ◽  
Kenneth D. Illingworth ◽  
David L. Skaggs ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Timothy J. Skalak ◽  
Joel Gagnier ◽  
Michelle S. Caird ◽  
Frances A. Farley ◽  
Ying Li

Abstract Purpose Higher pedicle screw density posterior spinal fusion (PSF) constructs have not been shown to result in improved curve correction in Lenke 1 and 5 adolescent idiopathic scoliosis (AIS) but do increase cost. The purpose of this study questioned whether higher screw density constructs improved curve correction and maintenance of correction in Lenke 2 AIS. Secondary goals were to identify predictive factors for correction and postoperative magnitude of curves in Lenke 2 AIS. Methods We identified patients 11 to 17 years old who underwent primary PSF for Lenke 2 AIS between 2007 and 2017 who had minimum follow-up of 2 years. Demographic and radiographic data were collected to perform regression and elimination analysis. Results Thirty patients (21 females, 9 males) were analyzed. Average age and SD at time of surgery was 14.0 ± 1.8 years (range, 11–17 years), and median follow-up was 2.8 years (IQR 2.1–4.0 years). Implant density did not predict final postoperative curve magnitude. Predictors of final postoperative curve magnitude were sex and preoperative curve magnitude. Predictors of percentage of correction of major curve were sex and age at the time of surgery. Predictors of final postoperative thoracic kyphosis were sex and percent flexibility preop. Females had lower final postoperative major curve magnitude, a higher percent curve correction, and lower postoperative thoracic kyphosis. Conclusions Increased implant density is not predictive of postoperative curve magnitude in Lenke 2 AIS. Predictors of postoperative curve magnitude are sex and preoperative curve magnitude. Level of evidence Level III, retrospective observational


2021 ◽  
Author(s):  
Timothy Skalak ◽  
Joel Gagnier ◽  
Michelle S. Caird ◽  
Frances A. Farley ◽  
Ying Li

Abstract Purpose: Higher pedicle screw density posterior spinal fusion (PSF) constructs have not been shown to result in improved curve correction in Lenke 1 and 5 adolescent idiopathic scoliosis (AIS) but do increase cost. The purpose of this study questioned whether higher screw density constructs improved curve correction and maintenance of correction in Lenke 2 AIS. Secondary goals were to identify predictive factors for correction and postoperative magnitude of curves in Lenke 2 AIS. Methods: We identified patients 11 to 17 years old who underwent primary PSF for Lenke 2 AIS between 2007 and 2017 who had minimum follow up of 2 years. Demographic and radiographic data were collected to perform regression and elimination analysis. Results: Thirty patients (21 Female, 9 male) were analyzed. Average age and SD at time of surgery was 14.0 ± 1.8 years (range, 11-17 years) and median follow-up was 2.8 years (IQR 2.1-4.0 years). Implant density did not predict final postoperative curve magnitude. Predictors of final postoperative curve magnitude were sex and preoperative curve magnitude. Predictors of percentage of correction of major curve were sex and age at the time of surgery. Predictors of final postoperative thoracic kyphosis were sex and percent flexibility preop. Females had lower final postoperative major curve magnitude, a higher percent curve correction, and lower postoperative thoracic kyphosis.Conclusions: Increased implant density is not predictive of postoperative curve magnitude in Lenke 2 AIS. Predictors of postoperative curve magnitude are sex and preoperative curve magnitude.Level of Evidence: Level III Retrospective Observational


2021 ◽  
Vol 103-B (3) ◽  
pp. 536-541
Author(s):  
Peter W. Ferlic ◽  
Laurenz Hauser ◽  
Michael Götzen ◽  
Richard Andreas Lindtner ◽  
Stefan Fischler ◽  
...  

Aims The aim of this retrospective study was to compare the correction achieved using a convex pedicle screw technique and a low implant density achieved using periapical concave-sided screws and a high implant density. We hypothesized that there would be no difference in outcome between the two techniques. Methods We retrospectively analyzed a series of 51 patients with a thoracic adolescent idiopathic scoliosis. There were 26 patients in the convex pedicle screw group who had screws implanted periapically (Group 2) and a control group of 25 patients with bilateral pedicle screws (Group 1). The patients’ charts were reviewed and pre- and postoperative radiographs evaluated. Postoperative patient-reported outcome measures (PROMs) were recorded. Results The number of implants (14.5 vs 17.1) and the implant density (1.5 vs 1.9) were significantly lower in Group 2 (p < 0.001). Operating time was 27 minutes shorter in Group 2 than in Group 1, with a mean of 217 minutes (SD 50.5; 120 to 346). The duration of surgery per instrumented vertebra was reduced by 19% in Group 2 (p = 0.011). No statistical difference was found in the postoperative Cobb angle, vertebral rotation, the relative correction achieved, or postoperative PROMs. Conclusion Despite a lower implant density and achieving correction through a convex rod, surgical correction of the Cobb angle and vertebral body rotation was similar in both groups. Periapical pedicle screws and primary correction on the concave side do not seem to be mandatory in order to achieve good surgical results in idiopathic thoracic scoliosis. The operating time was shorter in the group with lower implant density. In conclusion, the technique provided good results and has the potential to reduce complications and costs. Cite this article: Bone Joint J 2021;103-B(3):536–541.


2021 ◽  
Vol 13 (1) ◽  
pp. 6-9
Author(s):  
Ghanshyam Kakadiya ◽  
Kalpesh Saindane ◽  
Viraj Gandbhir ◽  
Yogesh Soni, ◽  
Kushal Gohil ◽  
...  

Objective: To determine the short term radiological outcomes of Lenke type 5C adolescent idiopathic scoliosis in terms of Cobb angle correction and coronal balance after selective posterior segmental spinal instrumentation with pedicle screws. Methods: This retrospective cohort study was conducted in the department of Orthopaedic at tertiary care public hospital of Mumbai, India. The medical records of patients from 17th April 2015 to 29th October 2019 who underwent a selective spinal fusion with pedicle screws for Lenke type-5C adolescent idiopathic scoliosis were reviewed. Preoperative radiographs were evaluated for Cobb angle of the lumbar or thoracolumbar curve as well as a sagittal and lumbar modifier on anteroposterior and lateral standing films. The curve correction, implant density, number of segment fused and coronal balance was assessed on postoperative radiographs. The pre and postoperative comparison of important study variables was done and P-value was calculated with the help of the chi-square test. P-value <0.05 was considered statistically significant. Results: The total number of patients was 34. Majority (94.1%, n=32) were females while only 2(5.9%) were males. The mean age at the time of operation was 14.35±2.19 years (range 8 to 19 years). Mean pre-operative and post-operative Cobb angles were 61.790±13.120 (range 400 to 850) and 10.550±8.710 (range 00 to 300) respectively (P-value 0.00). The mean percentage of curve correction and percentage of fulcrum flexibility was 83.35±13.07 % (range 55% to 100%) and 59.56%±15.07 (range 28.57% to 84.60%) respectively (P value 0.469). Mean implant density and fusion mass was 66.03±7.94% (range 53 to 79%) and 10.32±2.8 (range 7 to 15%) segments respectively. The coronal balance was achieved in all patients. No major complication was noted. Conclusion: Near normal Cobb angle correction and coronal balance was achieved in all patients of Lenke type 5C adolescent idiopathic scoliosis treated with posterior segmental spinal instrumentation utilizing pedicle screws.


2021 ◽  
Author(s):  
Luigi La Barbera ◽  
A. Noelle Larson ◽  
Carl-Eric Aubin

Abstract Study design Assessment of screw pattern, implant density (ID), and optimization of 3D correction through computer-based biomechanical models. Objective To investigate how screw pattern and ID affect intraoperative 3D correction of thoracic curves in adolescent idiopathic scoliosis, and how different correction objectives impact the optimal screw pattern. Summary of background data Screw pattern, ID, correction objectives and surgical strategies for posterior fusion of AIS are highly variable among experienced surgeons. The “optimal” instrumentation remains not well defined. Methods 10 patient-specific multibody models of representative adolescent idiopathic scoliosis Lenke 1A cases were built and used to compare alternative virtual correction surgeries. Five screw patterns and IDs (average: 1.6 screws/instrumented level, range: 1.2–2) were simulated, considering concave rod rotation, en bloc derotation, and compression/distraction as primary correction maneuvers. 3D correction descriptors were quantified in the coronal, sagittal and transverse planes. An objective function weighting the contribution of intraoperative 3D correction and mobility allowed rating of the outcomes of the virtual surgeries. Based on surgeon-dependent correction objectives, the optimal result among the simulated constructs was identified. Results Low-density (ID ≤ 1.4) constructs provided equivalent 3D correction compared to higher (ID ≥ 1.8) densities (average differences ranging between 2° and 3°). The optimal screw pattern varied from case to case, falling within the low-density screw category in 14% of considered scenarios, 73% in the mid-density (1.4 < ID < 1.8) and 13% in the high-density. The optimal screw pattern was unique in five cases; multiple optima were found in other cases depending on the considered correction objectives. Conclusions Low-density screw patterns provided equivalent intraoperative 3D correction to higher-density patterns. Simulated surgeon’s choice of correction objectives had the greatest impact on the selection of the optimal construct for 3D correction, while screw density and ID had a limited impact. Level of evidence N/A.


Author(s):  
Tom P. Schlösser ◽  
Kariman Abelin-Genevois ◽  
Jelle Homans ◽  
Saba Pasha ◽  
Moyo Kruyt ◽  
...  

Abstract Purpose There are distinct differences in strategy amongst experienced surgeons from different ‘scoliosis schools’ around the world. This study aims to test the hypothesis that, due to the 3-D nature of AIS, different strategies can lead to different coronal, axial and sagittal curve correction. Methods Consecutive patients who underwent posterior scoliosis surgery for primary thoracic AIS were compared between three major scoliosis centres (n = 193). Patients were treated according to the local surgical expertise: Two centres perform primarily an axial apical derotation manoeuvre (centre 1: high implant density, convex rod first, centre 2: low implant density, concave rod first), whereas centre 3 performs posteromedial apical translation without active derotation. Pre- and postoperative shape of the main thoracic curve was analyzed using coronal curve angle, apical rotation and sagittal alignment parameters (pelvic incidence and tilt, T1–T12, T4-T12 and T10-L2 regional kyphosis angles, C7 slope and the level of the inflection point). In addition, the proximal junctional angle at follow-up was compared. Results Pre-operative coronal curve magnitudes were similar between the 3 cohorts and improved 75%, 70% and 59%, from pre- to postoperative, respectively (P < 0.001). The strategy of centres 1 and 2 leads to significantly more apical derotation. Despite similar postoperative T4-T12 kyphosis, the strategy in centre 1 led to more thoracolumbar lordosis and in centre 2 to a higher inflection point as compared to centre 3. Proximal junctional angle was higher in centres 1 and 2 (P < 0.001) at final follow-up. Conclusion Curve correction by derotation may lead to thoracolumbar lordosis and therefore higher risk for proximal junctional kyphosis. Focus on sagittal plane by posteromedial translation, however, results in more residual coronal and axial deformity.


Sign in / Sign up

Export Citation Format

Share Document