formula complexity
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 7)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Andrew Blance ◽  
Michael Spannowsky

Abstract Photonic Quantum Computers provide several benefits over the discrete qubit-based paradigm of quantum computing. By using the power of continuous-variable computing we build an anomaly detection model to use on searches for New Physics. Our model uses Gaussian Boson Sampling, a #P-hard problem and thus not efficiently accessible to classical devices. This is used to create feature vectors from graph data, a natural format for representing data of high-energy collision events. A simple K-means clustering algorithm is used to provide a baseline method of classification. We then present a novel method of anomaly detection, combining the use of Gaussian Boson Sampling and a quantum extension to K-means known as Q-means. This is found to give equivalent results compared to the classical clustering version while also reducing the $$ \mathcal{O} $$ O complexity, with respect to the sample’s feature-vector length, from $$ \mathcal{O}(N) $$ O N to $$ \mathcal{O}\left(\log (N)\right) $$ O log N .


2019 ◽  
Vol 30 (3) ◽  
pp. 507-524
Author(s):  
Michael B. Giles ◽  
Mateusz B. Majka ◽  
Lukasz Szpruch ◽  
Sebastian J. Vollmer ◽  
Konstantinos C. Zygalakis

Abstract We develop a framework that allows the use of the multi-level Monte Carlo (MLMC) methodology (Giles in Acta Numer. 24:259–328, 2015. 10.1017/S096249291500001X) to calculate expectations with respect to the invariant measure of an ergodic SDE. In that context, we study the (over-damped) Langevin equations with a strongly concave potential. We show that when appropriate contracting couplings for the numerical integrators are available, one can obtain a uniform-in-time estimate of the MLMC variance in contrast to the majority of the results in the MLMC literature. As a consequence, a root mean square error of $$\mathcal {O}(\varepsilon )$$O(ε) is achieved with $$\mathcal {O}(\varepsilon ^{-2})$$O(ε-2) complexity on par with Markov Chain Monte Carlo (MCMC) methods, which, however, can be computationally intensive when applied to large datasets. Finally, we present a multi-level version of the recently introduced stochastic gradient Langevin dynamics method (Welling and Teh, in: Proceedings of the 28th ICML, 2011) built for large datasets applications. We show that this is the first stochastic gradient MCMC method with complexity $$\mathcal {O}(\varepsilon ^{-2}|\log {\varepsilon }|^{3})$$O(ε-2|logε|3), in contrast to the complexity $$\mathcal {O}(\varepsilon ^{-3})$$O(ε-3) of currently available methods. Numerical experiments confirm our theoretical findings.


2015 ◽  
Vol 53 ◽  
pp. 271-314 ◽  
Author(s):  
Diego Figueira ◽  
Santiago Figueira ◽  
Carlos Areces

We investigate model theoretic properties of XPath with data (in)equality tests over the class of data trees, i.e., the class of trees where each node contains a label from a finite alphabet and a data value from an infinite domain. We provide notions of (bi)simulations for XPpath logics containing the child, parent, ancestor and descendant axes to navigate the tree. We show that these notions precisely characterize the equivalence relation associated with each logic. We study formula complexity measures consisting of the number of nested axes and nested subformulas in a formula; these notions are akin to the notion of quantifier rank in first-order logic. We show characterization results for fine grained notions of equivalence and (bi)simulation that take into account these complexity measures. We also prove that positive fragments of these logics correspond to the formulas preserved under (non-symmetric) simulations. We show that the logic including the child axis is equivalent to the fragment of first-order logic invariant under the corresponding notion of bisimulation. If upward navigation is allowed the characterization fails but a weaker result can still be established. These results hold both over the class of possibly infinite data trees and over the class of finite data trees. Besides their intrinsic theoretical value, we argue that bi-simulations are useful tools to prove (non)expressivity results for the logics studied here, and we substantiate this claim with examples.


Sign in / Sign up

Export Citation Format

Share Document