scholarly journals Multi-level Monte Carlo methods for the approximation of invariant measures of stochastic differential equations

2019 ◽  
Vol 30 (3) ◽  
pp. 507-524
Author(s):  
Michael B. Giles ◽  
Mateusz B. Majka ◽  
Lukasz Szpruch ◽  
Sebastian J. Vollmer ◽  
Konstantinos C. Zygalakis

Abstract We develop a framework that allows the use of the multi-level Monte Carlo (MLMC) methodology (Giles in Acta Numer. 24:259–328, 2015. 10.1017/S096249291500001X) to calculate expectations with respect to the invariant measure of an ergodic SDE. In that context, we study the (over-damped) Langevin equations with a strongly concave potential. We show that when appropriate contracting couplings for the numerical integrators are available, one can obtain a uniform-in-time estimate of the MLMC variance in contrast to the majority of the results in the MLMC literature. As a consequence, a root mean square error of $$\mathcal {O}(\varepsilon )$$O(ε) is achieved with $$\mathcal {O}(\varepsilon ^{-2})$$O(ε-2) complexity on par with Markov Chain Monte Carlo (MCMC) methods, which, however, can be computationally intensive when applied to large datasets. Finally, we present a multi-level version of the recently introduced stochastic gradient Langevin dynamics method (Welling and Teh, in: Proceedings of the 28th ICML, 2011) built for large datasets applications. We show that this is the first stochastic gradient MCMC method with complexity $$\mathcal {O}(\varepsilon ^{-2}|\log {\varepsilon }|^{3})$$O(ε-2|logε|3), in contrast to the complexity $$\mathcal {O}(\varepsilon ^{-3})$$O(ε-3) of currently available methods. Numerical experiments confirm our theoretical findings.

Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 735-743 ◽  
Author(s):  
Pekka Uimari ◽  
Ina Hoeschele

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL.


2013 ◽  
Vol 21 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Ryan Bakker ◽  
Keith T. Poole

In this article, we show how to apply Bayesian methods to noisy ratio scale distances for both the classical similarities problem as well as the unfolding problem. Bayesian methods produce essentially the same point estimates as the classical methods, but are superior in that they provide more accurate measures of uncertainty in the data. Identification is nontrivial for this class of problems because a configuration of points that reproduces the distances is identified only up to a choice of origin, angles of rotation, and sign flips on the dimensions. We prove that fixing the origin and rotation is sufficient to identify a configuration in the sense that the corresponding maxima/minima are inflection points with full-rank Hessians. However, an unavoidable result is multiple posterior distributions that are mirror images of one another. This poses a problem for Markov chain Monte Carlo (MCMC) methods. The approach we take is to find the optimal solution using standard optimizers. The configuration of points from the optimizers is then used to isolate a single Bayesian posterior that can then be easily analyzed with standard MCMC methods.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 393
Author(s):  
Jan F. Haase ◽  
Luca Dellantonio ◽  
Alessio Celi ◽  
Danny Paulson ◽  
Angus Kan ◽  
...  

Gauge theories establish the standard model of particle physics, and lattice gauge theory (LGT) calculations employing Markov Chain Monte Carlo (MCMC) methods have been pivotal in our understanding of fundamental interactions. The present limitations of MCMC techniques may be overcome by Hamiltonian-based simulations on classical or quantum devices, which further provide the potential to address questions that lay beyond the capabilities of the current approaches. However, for continuous gauge groups, Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation. Current truncation schemes require dramatically increasing computational resources at small values of the bare couplings, where magnetic field effects become important. Such limitation precludes one from `taking the continuous limit' while working with finite resources. To overcome this limitation, we provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation. Our new method allows for calculations at arbitrary values of the bare coupling and lattice spacing. The approach consists of the combination of a Hilbert space truncation with a regularization of the gauge group, which permits an efficient description of the magnetically-dominated regime. We focus here on Abelian gauge theories and use 2+1 dimensional quantum electrodynamics as a benchmark example to demonstrate this efficient framework to achieve the continuum limit in LGTs. This possibility is a key requirement to make quantitative predictions at the field theory level and offers the long-term perspective to utilise quantum simulations to compute physically meaningful quantities in regimes that are precluded to quantum Monte Carlo.


2018 ◽  
Author(s):  
Saley Issa ◽  
Ribatet Mathieu ◽  
Molinari Nicolas

AbstractPolicy makers increasingly rely on hospital competition to incentivize patients to choose high-value care. Travel distance is one of the most important drivers of patients’ decision. The paper presents a method to numerically measure, for a given hospital, the distance beyond which no patient is expected to choose the hospital for treatment by using a new approach in discrete choice models. To illustrate, we compared 3 hospitals attractiveness related to this distance for asthma patients admissions in 2009 in Hérault (France), showing, as expected, CHU Montpellier is the one with the most important spatial wingspan. For estimation, Monte Carlo Markov Chain (MCMC) methods are used.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hisham M. Almongy ◽  
Ehab M. Almetwally ◽  
Randa Alharbi ◽  
Dalia Alnagar ◽  
E. H. Hafez ◽  
...  

This paper is concerned with the estimation of the Weibull generalized exponential distribution (WGED) parameters based on the adaptive Type-II progressive (ATIIP) censored sample. Maximum likelihood estimation (MLE), maximum product spacing (MPS), and Bayesian estimation based on Markov chain Monte Carlo (MCMC) methods have been determined to find the best estimation method. The Monte Carlo simulation is used to compare the three methods of estimation based on the ATIIP-censored sample, and also, we made a bootstrap confidence interval estimation. We will analyze data related to the distribution about single carbon fiber and electrical data as real data cases to show how the schemes work in practice.


Sign in / Sign up

Export Citation Format

Share Document