free core resonance
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Antonella Amoruso ◽  
Luca Crescentini

<p>The Free Core Nutation (FCN) is a retrograde mode related to the slight misalignment of the rotation axis of the fluid outer core and the elastic mantle, with a period of about 430 sidereal days in the celestial frame. In the Earth-fixed reference frame, the (complex) frequency of the Free Core Nutation (FCN) is inside the diurnal tidal band and causes a resonant response (Free Core Resonance, FCR) of some diurnal tidal waves to the tide-generating forces.<br>The FCN is usually investigated through its effects on gravity tides and Earth nutations. Here we analyse about 7 years of discontinuous strain records from two 90-m long laser interferometers (strainmeters) operating under the Gran Sasso (Italy) massif and about 4.6 years of discontinuous strain records from two 70-m-long laser interferometers operating the Central Pyrenees (Spain).<br>Starting from the expressions for the vector displacements due to diurnal and semi-diurnal solid tides, we express  extension along any azimuthal direction in terms of three complex parameters (related to areal strain and the two shear strain components), which are functions of the latitude-dependent Love and Shida numbers. Those three complex parameters are affected by the FCR through three complex resonance strengths.<br>We find that we can infer 4 model parameters from the inversion of our data, i. e. from the comparison between amplitudes and phases of the measured and theoretical diurnal tides close to the resonance: the FCN period, the FCR quality factor, the imaginary part of one of the three resonance strengths, and the real part of another resonance strength. However, local deformation is distorted with respect to regional deformation because of siting effects. Coupling between local extension (measured by the interferometers) and regional deformation can be described by three coupling coefficients per interferometer, thus introducing 12 additional unknown in the inversions.<br>We minimize misfit between amplitudes and phases of the measured and theoretical tidal strain jointly for all the interferometers by sampling the 4D model parameter space, while optimal coupling coefficients for each interferometer are computed through a simple matrix inversion at each sampled point.<br>Theoretical strain tides is corrected for the effects of the water load oscillations caused by ocean tides. We use FES2014 and TPXO9 ocean models, while the appropriate Earth model for different ocean load areas is chosen basing on the widths of the continental shelves nearby the stations and the inversion misfits.<br>Although we analyse records from two stations only and the amount of data is relatively small, our results for the FCN period and (to some extent) the FCR quality factor are robust and comparable to those obtained from gravity tides and  nutations. Moreover, we obtain reliable values of the resonance strengths and robust estimates of the coupling coefficients for all the interferometers.</p>


2019 ◽  
pp. 41-50
Author(s):  
V. K. Milyukov ◽  
A. Amoruso ◽  
L. Crescentini ◽  
A. P. Mironov ◽  
A. V. Myasnikov ◽  
...  

The free core nutation (FCN) is one of the Earth’s rotational eigenmodes, which is caused by the retrograde motion of the liquid core relative to the mantle. The FCN period and Q-factor are determined by the elastic properties of the core/mantle boundary (CMB) and their electromagnetic interaction. In the celestial coordinate system, the FCN period is about 430 days; in the Earth-fixed reference frame this effect manifests itself in the form of the free core resonance (FCR) whose frequency falls in the diurnal tidal band. FCR observation requires highly accurate measurement of the amplitudes and phases of the near-diurnal tidal waves. In particular, the parameter estimates for minor waves K1, P1, Ψ1, and Φ1 are critically important for evaluating the FCR effect, i.e., the period and decay of this resonant mode. The progress in the experimental study of FCR is mainly due to the accumulation of the data from superconducting gravimeters and VLBI; at the same time, also the data of the precision laser strainmeters were used. In this work, the FCR effect is studied based on the long-term strain precision records by two European stations: Baksan, Russia (laser interferometer–strainmeter with a measuring armlength of 75 m [Milyukov et al., 2005; 2007] and Gran Sasso, Italy (two perpendicular laser interferometer–strainmeters, BA and BC, each with a measuring armlength of 90 m [Amoruso and Crescentini, 2009]).


2019 ◽  
Vol 55 (3) ◽  
pp. 389-396 ◽  
Author(s):  
V. K. Milyukov ◽  
A. Amoruso ◽  
L. Crescentini ◽  
A. P. Mironov ◽  
A. V. Myasnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document