shear flow instability
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Maren Haid ◽  
Alexander Gohm ◽  
Lukas Umek ◽  
Helen C. Ward ◽  
Mathias W. Rotach

AbstractWe present a comprehensive analysis of four south föhn events observed during the Penetration and Interruption of Alpine Foehn (PIANO) field campaign in the Inn Valley, Austria, in the vicinity of Innsbruck. The goal is to detect and quantify processes of cold-air pool (CAP) erosion by föhn as well as processes of föhn breakdown. Despite differences in föhn breakthrough and strength, the four cases exhibit similarities in CAP evolution: initially, the CAP experienced strongest warming in the centre of Innsbruck, where the föhn jet from the Wipp Valley interacted with the CAP in the Inn Valley. The resulting shear-flow instability at the föhn–CAP interface caused turbulent CAP erosion and, together with vertical warm-air advection, led to CAP depression over the city centre. This depression drove pre-föhn westerlies near the surface that caused cold-air advection inside the CAP west of the city centre and warm-air advection in the east. Ultimately, the latter contributed to stronger CAP erosion in the east than in the west. This stronger heating also explains the preferential initial föhn breakthrough at the valley floor east of Innsbruck. In two of the cases, subsequent westward propagation of the föhn–CAP boundary across the city accompanied by northerly (deflected) föhn winds led to a complete föhn breakthrough. Föhn breakdown occurred either by a backflow of the CAP remnant or by a cold-frontal passage. This study emphasizes the importance of both turbulence and advection in the CAP heat budget and reveal their large spatio–temporal variability.


2021 ◽  
Vol 28 (2) ◽  
pp. 022309
Author(s):  
A. E. Fraser ◽  
P. W. Terry ◽  
E. G. Zweibel ◽  
M. J. Pueschel ◽  
J. M. Schroeder

2020 ◽  
Vol 88 (12) ◽  
pp. 1041-1048
Author(s):  
Tom Howard ◽  
Ana Barbosa Aguiar

2019 ◽  
Vol 865 ◽  
pp. 1042-1071 ◽  
Author(s):  
Nabil Abderrahaman-Elena ◽  
Chris T. Fairhall ◽  
Ricardo García-Mayoral

Direct numerical simulations of turbulent channels with rough walls are conducted in the transitionally rough regime. The effect that roughness produces on the overlying turbulence is studied using a modified triple decomposition of the flow. This decomposition separates the roughness-induced contribution from the background turbulence, with the latter essentially free of any texture footprint. For small roughness, the background turbulence is not significantly altered, but merely displaced closer to the roughness crests, with the change in drag being proportional to this displacement. As the roughness size increases, the background turbulence begins to be modified, notably by the increase of energy for short, wide wavelengths, which is consistent with the appearance of a shear-flow instability of the mean flow. A laminar model is presented to estimate the roughness-coherent contribution, as well as the displacement height and the velocity at the roughness crests. Based on the effects observed in the background turbulence, the roughness function is decomposed into different terms to analyse different contributions to the change in drag, laying the foundations for a predictive model.


2014 ◽  
Vol 753 ◽  
pp. 29-48 ◽  
Author(s):  
C. L. Dora ◽  
T. Murugan ◽  
S. De ◽  
Debopam Das

AbstractCounter-rotating vortex rings (CRVRs) are observed to form ahead of a primary compressible vortex ring that is generated at the open end of a shock tube at sufficiently high Mach numbers. In most of the earlier studies, the embedded shock strength has been asserted as the cause for the formation of CRVRs. In the present study, particle image velocimetry (PIV) measurements and high-order numerical simulations show that CRVRs do not form in the absence of a Mach disk in the sonic under-expanded jet behind the primary vortex ring. Kelvin–Helmholtz-type shear flow instability of the slipstream originating from the triple point of the Mach disk and subsequent eddy pairing, as observed by Rikanati et al. (Phys. Rev. Lett., vol. 96, 2006, art. 174503) in shock-wave Mach reflection, is found to be responsible for CRVR formation. The growth rate of the slipstream in the present problem follows the model proposed by them. The parameters influencing the formation of CRVRs as well as their dynamics is investigated. It is found that the strength of the Mach disk and its duration of persistence results in an exit impulse that determines the number of CRVRs formed.


2013 ◽  
Vol 8 (S300) ◽  
pp. 15-29 ◽  
Author(s):  
Thomas Berger

AbstractWe review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new “funnel prominence” classification, and a discussion of the recent “solar tornado” findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the “prominence bubble” phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.


2012 ◽  
Vol 171 (3-4) ◽  
pp. 408-414
Author(s):  
S. Hayashi ◽  
S. Ishino ◽  
M. Tsubota ◽  
H. Takeuchi

Sign in / Sign up

Export Citation Format

Share Document