cold air
Recently Published Documents


TOTAL DOCUMENTS

1434
(FIVE YEARS 261)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yanjun Qi ◽  
Renhe Zhang ◽  
Zhuo Wang

Abstract A severe flooding hit southern China along the Yangtze River in summer 2020. The floods were induced by heavy rains, and the associated dynamic and thermodynamic conditions are investigated using daily gridded rainfall data of China and NCEP-NCAR reanalysis. It is found that the summer rainfall over the Yangtze River Basin (YRB) experienced pronounced subseasonal variation in 2020, dominated by a quasi-biweekly oscillation (QBWO) mode. The southwestward-moving anomalous QBWO circulation was essentially the fluctuation of cold air mass related to the tropospheric polar vortex or trough-ridge activities over the mid-high latitude Eurasian in boreal summer. The large-scale southwestward-transport of cold air mass from mid-high latitudes and the northeastward-transport of warm and moist air by the strong anomalous anticyclone over the western North Pacific provided important circulation support for the heavy rainfall in the YRB. The quasi-biweekly anomalies of potential and divergent component of vertically integrated water vapor flux played a major role in maintaining the moisture during summer 2020. The diagnosis of moisture budget shows that the enhanced moisture associated with the quasi-biweekly fluctuation rainfall was primarily attributed to the moisture convergence. The convergence of QBWO specific humidity by the background mean flow and convergence of mean specific humidity by QBWO flow played dominant roles in contributing to the positive moisture tendency. In combination with an adiabatic ascent induced by the warm temperature advection, the boundary layer moisture convergence strengthens the upward transport of moisture from lower troposphere. The vertical moisture transport associated with boundary layer convergence was of critical importance in causing low-level tropospheric moistening, whereas the horizontal advection of moisture showed a negative effect during the anomalous quasi-biweekly summer rainfall in 2020.


2021 ◽  
Author(s):  
Vincenzo Capozzi ◽  
Carmela De Vivo ◽  
Giorgio Budillon

Abstract. This work presents a new, very long snowfall time series collected in a remote site of Italian Apennine mountains (Montevergine Observatory, 1280 m a.s.l.). After a careful check, based on quality control tests and homogenization procedures, the available data (i.e. daily height of new snow) have been aggregated over winter season (December-January-February) to study the long-term variability in the period 1884–2020. The main evidences emerged from this analysis lie in (i) the strong interannual variability of winter snowfall amounts, in (ii) the absence of a relevant trend from late 19th century to mid-1970s, in (iii) the strong reduction of the snowfall amount and frequency of occurrence from mid-1970s to the end of 1990s (−45 and −17 % compared to the average recorded in 1884–1975 period, respectively), and in (iv) the increase of average snowfall amount and frequency of occurrence in the last 20 years. Moreover, this study shed light on the relationship between the snowfall variability observed in Montevergine and the large-scale atmospheric circulation. Six different synoptic types, describing the meteorological scenarios triggering the snow events in the study area, have been identified by means of a cluster analysis, using two essential atmospheric variables, the 500-hPa geopotential height and the sea level pressure (both retrieved from the third version of Twentieth Century Reanalysis dataset). Such patterns trace out scenarios characterized by the presence of a blocking high-pressure anomaly over Scandinavia or North Atlantic and by a cold air outbreak, involving both maritime and continental cold air masses. A further analysis demonstrates that the identified synoptic types are strongly related with different teleconnection patterns, i.e. the Arctic Oscillation (AO), the Eastern Atlantic Western Russia (EAWR), the Eastern Mediterranean Pattern (EMP), the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCAND), that govern the European winter atmospheric variability. The relevant decline in snowfall frequency and amounts between 1970s and 1990s can be mainly ascribed to the strong positive trend of AO and NAO indices, which determined, in turn, a decrease in the incidence of patterns associated to the advection, in central Mediterranean area, of moist and cold arctic maritime air masses. The recent increase in average snowfall amounts can be explained by the reverse trend of AO index and by the prevalence of neutral or negative EAWR pattern.


Abstract From 0200 to 1000 LST 2 June 2017, the shallow, East-West oriented Mei-Yu front (< 1 km) cannot move over the Yang-Ming Mountains (with peaks ∼ 1120 m) when it first arrives. The postfrontal cold air at the surface is deflected by the Yang-Ming Mountains and moves through the Keelung River and Tamsui River valleys into the Taipei Basin. The shallow northerly winds are anchored along the northern side of the Yang-Ming Mountains for 8 hours. In addition, the southwesterly barrier jet with maximum winds in the 900–950-hPa layer brings in abundant moisture and converges with the northwesterly flow in the southwestern flank of the Mei-Yu frontal cyclone. Therefore, torrential rain (> 600 mm) occurs over the northern side of the Yang-Ming Mountains. From 1100 to 1200 LST, with the gradual deepening of the postfrontal cold air, the front finally passes over the Yang-Ming Mountains and arrives at the Taipei Basin, which results in an E-W oriented rainband with the rainfall maxima over the northwestern coast and Taipei Basin. From 1300 to 1400 LST, the frontal rainband continues to move southward with rainfall over the northwestern slopes of the Snow Mountains. In the prefrontal southwesterly flow, the orographic lifting of the moisture-laden low-level winds results in heavy rainfall on the southwestern slopes of the Snow Mountains and the Central Mountain Range. With the terrain of the Yang-Ming Mountains removed in the high-resolution model, the Mei-Yu front moves quickly southward without a rainfall maximum over the northern tip of Taiwan.


2021 ◽  
Vol 4 ◽  
pp. 69-83
Author(s):  
I.I. Leonov ◽  
◽  
N.N. Sokolikhina ◽  

Synoptic conditions for the formation of an unprecedented ice storm with the generation of long-lived high-intensity glaze ice on the vast territory in Primorsky Krai are investigated. The leading role of the strong extension of the layer with positive temperature towards the cold air mass and the existence of two-way temperature advection in the lower troposphere are shown. It is shown that the long-term preservation of glaze ice on the territory of the region was associated with the movement of the southern cyclone to the east and the arrival of cold air masses from the continent. Experiments were implemented to simulate freezing precipitation using the WRF-ARW mesoscale model. The simulation results made it possible to obtain more detailed data on the vertical structure of the atmosphere during the formation of freezing precipitation and to fill in the missing data for analysis. Keywords: severe weather events, ice accretion, glaze ice, freezing rain, ice pellets, numerical weather prediction, WRF-ARW


Dynamics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 204-216
Author(s):  
Fabien Beaumont ◽  
Fabien Bogard ◽  
Hassen Hakim ◽  
Sébastien Murer ◽  
Bastien Bouchet ◽  
...  

Partial body cryotherapy cabins most often use liquid nitrogen as their cryogenic fluid, which raises safety concerns during operation. In this study, an innovative cryotherapy cabin design is presented, featuring an electric cooling system suitable for producing cold air at −30 °C. The geometry of the designed cryotherapy cabin is evaluated by a thermodynamic modeling which aims at optimizing the circulation of cold air flows inside the cabin. The numerical study is carried out in two successive phases, the first one being necessary to model the pre-cooling phase and to estimate the time required to reach an average temperature close to the set temperature of −30 °C. The second one aims at modeling a 3-min cryotherapy session by taking into account the thermal transfers between the human body and its environment. Results demonstrate the potential benefits of the cold air injection device which has been designed to optimize the thermal transfers and homogenize the temperatures within the therapeutic enclosure. The main innovation of this study is the ability to customize cryotherapy protocols by injecting cold air at different levels through targeting of specific body areas. Further calculations would be required to determine the precise impact of zone-targeted injection on skin cooling.


2021 ◽  
Vol 50 (2-3) ◽  
Author(s):  
Andrej Mihevc

In the Velika ledena jama v Paradani, in the karstic blowholes on the slopes of Smrekova draga and in the nearby dolines I measured and interpreted air temperatures and the effect of the summer outflow of cold air from them into the surrounding area. In winter, cold air enters the cave, radically cooling the entrance part of the cave, where for this reason there is permanent cave ice. The summertime circulation is reversed: emerging from the inner part of cave, which has an average temperature of around 4° C, is air which only when it transits through the sub-cooled entrance part is then cooled to around 1° C. This air comes to the surface and in the hollow at the cave entrance maintains a distinct thermal inversion during the warm part of the year. There is a similar air circulation and similar development of annual temperatures observed at the vents, where cave air emerges through rubble spread over cave entrances on slopes or at the bottom of dolines. The stable summer air temperatures of around 1° C in the vents where I conducted measurements indicate that underneath them there is also permafrost or sub-cooled rock and permanent ice. This is created and preserved, just like in the caves, due to the advection of cold air in winter. In Trnovski gozd, such karstic permafrost is found at an altitude of 1,100 m above sea level. The outflow of cold air from the vents in the summer, just like inside the cave, causes a distinct thermal inversion in dolines on the surface.


MAUSAM ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 133-144
Author(s):  
SURANJANA SARA ◽  
K.R. SAHA

A study of ten-year (1976-1985) mean July climatology of southern Asia and adjoining ocean areas confirms the presence of a well-defined stationary wave, believed to be due mainly to land-sea thermal contrast over the region, in the fields of several meteorological variables. The wave extends laterally over about 10 degrees of latitude with maximum intensity along about 20° N and vertically from surface to about 300 hPa. Its zonal wavelength is about 2000-2500 km and its amplitude in the field of zonal anomaly of temperature and meridional component of wind is 1 oC and 4ms-l respectively. The trough-ridge system of the wave appears to tilt eastward with height from surface to about 700 hPa and westward aloft up to about 300 hPa, while the warmest-coldest anomaly system appears to tilt eastward all the way from surface to about 300 hPa. A phase difference appears to exist between the geopotential and the temperature fields in both the lower and the upper tropospheres. The aforesaid zonal-vertical tilt of the monsoon trough and phase difference between the geopotential and the temperature fields appears to be compatible, through thermal advection, With a direct conversion of eddy available potential energy into eddy kinetic energy via a west-east (clockwise) overturning with warm air rising in the west and cold air sinking in the east in the case of the eastward-tilting lower-tropospheric trough and an east-west (anti-clockwise) overturning with warm air rising in the east and cold air sinking in the west in the case of the westward-tilting middle and upper-tropospheric trough, An enhancement of the thermal advection and hence the vertical circulation may occasionally lead to development of the trough into a I(JW or depression. However, the question of development of the trough and physical factors, which may contribute to such development, needs to be examined by further study.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 625
Author(s):  
Hao-Hsiang Hsu ◽  
Wei-Hwa Chiang ◽  
Jian-Sheng Huang

This study involved a series of computational fluid dynamics simulations to evaluate the effectiveness of stack and displacement ventilation in providing better thermal comfort in an air-conditioned office building. To reduce energy consumption, the public area of the studied building is cooled by air from air-conditioned rooms with lower temperatures. The air, which is driven by buoyancy, then, flows outside through the multistory atrium. The simulation results indicated that displacement ventilation provides superior thermal comfort performance relative to stack ventilation. A design with a higher ceiling, a higher heat source and a lower inlet with cold air can substantially enhance the efficiency of displacement ventilation. Furthermore, handrails near the atrium play a crucial role because they help to retain cold air in the public space for a longer period, thereby contributing to a better predicted mean vote value.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shaojun Lai ◽  
Ying Li ◽  
Fen He ◽  
Yufei Wang ◽  
Yan Chen

Based on the typhoon best tracks of the China Meteorological Administration (CMA), ERA5 reanalysis data of ECMWF at 0.25 degrees horizontal resolution, and NOAA optimal interpolated sea surface temperature (OISST V2) data, the dynamical compositing analysis is used to study the north turning at nearly 90 degrees of 4 westward typhoons over the South China Sea (SCS). The composite analysis results show that: (1) As the typhoon goes westward into the SCS, the upper-level westerly trough moves eastward to the vicinity of 110°E in the mainland of China, and the western North Pacific subtropical high (SH) retreats eastward at the same time, which weakens the steering flow of typhoon and slowes down its movement. (2) The cold air guided by the westerly trough invades southwardly into the western part of SCS from the mainland leading to a descending and divergent airflow in the lower-to-middle atmospheric layers and enhancing the eastward pressure gradient force (PGF) in the west quadrant of the typhoon, which blocks and repesl the typhoon from moving any further westward. (3) Due to the cold air intrusion, the vertical atmospheric stratification in the west quadrant of the typhoon becomes static and stable, which may suppress the convection, impeding a typhoon’s westward motion. (4) With the cold air involving to the south of the typhoon, the direction of the PGF on the typhoon switches from eastward to northward, and the SH falling southward enhances the southwesterly airflow on the south of the typhoon at the same time. The remarkable increase of the northward steering airflows of the typhoon results in an abrupt northward turn. (5) In addition, the sea surface temperature (SST) and the ocean heat content (OHC) on the western part of the SCS is also reduced, attributed to the cold air cooling, and the typhoon is likely to avoid the cold ocean and approach a relatively warmer region. This study suggests that cold avoidance during the westward movement of typhoons is worthy of consideration in the operational forecast of typhoon tracks.


Sign in / Sign up

Export Citation Format

Share Document