standard monomial
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)





Author(s):  
Jongwon Kim ◽  
Brendon Rhoades

Abstract Let $W$ be an irreducible complex reflection group acting on its reflection representation $V$. We consider the doubly graded action of $W$ on the exterior algebra $\wedge (V \oplus V^*)$ as well as its quotient $DR_W:= \wedge (V \oplus V^*)/ \langle \wedge (V \oplus V^*)^{W}_+ \rangle $ by the ideal generated by its homogeneous $W$-invariants with vanishing constant term. We describe the bigraded isomorphism type of $DR_W$; when $W = {{\mathfrak{S}}}_n$ is the symmetric group, the answer is a difference of Kronecker products of hook-shaped ${{\mathfrak{S}}}_n$-modules. We relate the Hilbert series of $DR_W$ to the (type A) Catalan and Narayana numbers and describe a standard monomial basis of $DR_W$ using a variant of Motzkin paths. Our methods are type-uniform and involve a Lefschetz-like theory, which applies to the exterior algebra $\wedge (V \oplus V^*)$.





10.37236/6970 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Brendon Rhoades ◽  
Andrew Timothy Wilson

Let $n,k,$ and $r$ be nonnegative integers and let $S_n$ be the symmetric group. We introduce a quotient $R_{n,k,r}$ of the polynomial ring $\mathbb{Q}[x_1, \dots, x_n]$ in $n$ variables which carries the structure of a graded $S_n$-module.  When $r \ge n$ or $k = 0$ the quotient $R_{n,k,r}$ reduces to the classical coinvariant algebra $R_n$ attached to the symmetric group. Just as algebraic properties of $R_n$ are controlled by combinatorial properties of permutations in $S_n$, the algebra of $R_{n,k,r}$ is controlled by the combinatorics of objects called tail positive words. We calculate the standard monomial basis of $R_{n,k,r}$ and its graded $S_n$-isomorphism type. We also view $R_{n,k,r}$ as a module over the 0-Hecke algebra $H_n(0)$, prove that $R_{n,k,r}$ is a projective 0-Hecke module, and calculate its quasisymmetric and nonsymmetric 0-Hecke characteristics. We conjecture a relationship between our quotient $R_{n,k,r}$ and the delta operators of the theory of Macdonald polynomials.



Sign in / Sign up

Export Citation Format

Share Document