scholarly journals A symmetric property in the enhanced common index jump theorem with applications to the closed geodesic problem

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Muhammad Hamid ◽  
Wei Wang

<p style='text-indent:20px;'>In this paper, we prove a symmetric property for the indices for symplectic paths in the enhanced common index jump theorem (cf. Theorem 3.5 in [<xref ref-type="bibr" rid="b6">6</xref>]). As an application of this property, we prove that on every compact Finsler manifold <inline-formula><tex-math id="M1">\begin{document}$ (M, \, F) $\end{document}</tex-math></inline-formula> with reversibility <inline-formula><tex-math id="M2">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and flag curvature <inline-formula><tex-math id="M3">\begin{document}$ K $\end{document}</tex-math></inline-formula> satisfying <inline-formula><tex-math id="M4">\begin{document}$ \left(\frac{\lambda}{\lambda+1}\right)^2&lt;K\le 1 $\end{document}</tex-math></inline-formula>, there exist two elliptic closed geodesics whose linearized Poincaré map has an eigenvalue of the form <inline-formula><tex-math id="M5">\begin{document}$ e^{\sqrt {-1}\theta} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M6">\begin{document}$ \frac{\theta}{\pi}\notin{\bf Q} $\end{document}</tex-math></inline-formula> provided the number of closed geodesics on <inline-formula><tex-math id="M7">\begin{document}$ M $\end{document}</tex-math></inline-formula> is finite.</p>

2019 ◽  
Vol 19 (3) ◽  
pp. 495-518 ◽  
Author(s):  
Wei Wang

Abstract In this paper, we prove that on every Finsler manifold {(M,F)} with reversibility λ and flag curvature K satisfying {(\frac{\lambda}{\lambda+1})^{2}<K\leq 1} , there exist {[\frac{\dim M+1}{2}]} closed geodesics. If the number of closed geodesics is finite, then there exist {[\frac{\dim M}{2}]} non-hyperbolic closed geodesics. Moreover, there are three closed geodesics on {(M,F)} satisfying the above pinching condition when {\dim M=3} .


1992 ◽  
Vol 02 (01) ◽  
pp. 1-9 ◽  
Author(s):  
YOHANNES KETEMA

This paper is concerned with analyzing Melnikov’s method in terms of the flow generated by a vector field in contrast to the approach based on the Poincare map and giving a physical interpretation of the method. It is shown that the direct implication of a transverse crossing between the stable and unstable manifolds to a saddle point of the Poincare map is the existence of two distinct preserved homoclinic orbits of the continuous time system. The stability of these orbits and their role in the phenomenon of sensitive dependence on initial conditions is discussed and a physical example is given.


2007 ◽  
Vol 17 (03) ◽  
pp. 837-850 ◽  
Author(s):  
SHIGEKI TSUJI ◽  
TETSUSHI UETA ◽  
HIROSHI KAWAKAMI

The Bonhöffer–van der Pol (BVP) oscillator is a simple circuit implementation describing neuronal dynamics. Lately the diffusive coupling structure of neurons attracts much attention since the existence of the gap-junctional coupling has been confirmed in the brain. Such coupling is easily realized by linear resistors for the circuit implementation, however, there are not enough investigations about diffusively coupled BVP oscillators, even a couple of BVP oscillators. We have considered several types of coupling structure between two BVP oscillators, and discussed their dynamical behavior in preceding works. In this paper, we treat a simple structure called current coupling and study their dynamical properties by the bifurcation theory. We investigate various bifurcation phenomena by computing some bifurcation diagrams in two cases, symmetrically and asymmetrically coupled systems. In symmetrically coupled systems, although all internal elements of two oscillators are the same, we obtain in-phase, anti-phase solution and some chaotic attractors. Moreover, we show that two quasi-periodic solutions disappear simultaneously by the homoclinic bifurcation on the Poincaré map, and that a large quasi-periodic solution is generated by the coalescence of these quasi-periodic solutions, but it disappears by the heteroclinic bifurcation on the Poincaré map. In the other case, we confirm the existence a conspicuous chaotic attractor in the laboratory experiments.


1980 ◽  
Vol 47 (3) ◽  
pp. 645-651 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-freedom Hamiltonian system is studied by deriving an approximation for the Poincare´ map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as an alternative to the usual linearized stability analysis based on Floquet theory. An example is given for which the Floquet theory approach fails to predict stability but for which the Poincare´ map approach succeeds.


1994 ◽  
Vol 116 (2) ◽  
pp. 339-351
Author(s):  
Kerry N. Jones ◽  
Alan W. Reid

AbstractChinburg and Reid have recently constructed examples of hyperbolic 3-manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain immersed totally geodesic surfaces there are always non-simple closed geodesics. Here we construct examples of manifolds with non-simple closed geodesics and no totally geodesic surfaces.


Author(s):  
Pål Liljebäck ◽  
Kristin Y. Pettersen ◽  
Øyvind Stavdahl ◽  
Jan Tommy Gravdahl

2018 ◽  
Vol 28 (08) ◽  
pp. 1850094 ◽  
Author(s):  
Justin Eilertsen ◽  
Jerry Magnan

We analyze the dynamics of the Poincaré map associated with the center manifold equations of double-diffusive thermosolutal convection near a codimension-four bifurcation point when the values of the thermal and solute Rayleigh numbers, [Formula: see text] and [Formula: see text], are comparable. We find that the bifurcation sequence of the Poincaré map is analogous to that of the (continuous) Lorenz equations. Chaotic solutions are found, and the emergence of strange attractors is shown to occur via three different routes: (1) a discrete Lorenz-like attractor of the three-dimensional Poincaré map of the four-dimensional center manifold equations that forms as the result of a quasi-periodic homoclinic explosion; (2) chaos that follows quasi-periodic intermittency occurring near saddle-node bifurcations of tori; and, (3) chaos that emerges from the destruction of a 2-torus, preceded by frequency locking.


Sign in / Sign up

Export Citation Format

Share Document