sperm swimming speed
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2279
Author(s):  
Kristin A. Hook ◽  
Lauren M. Wilke ◽  
Heidi S. Fisher

Mammals exhibit a tremendous amount of variation in sperm morphology and despite the acknowledgement of sperm structural diversity across taxa, its functional significance remains poorly understood. Of particular interest is the sperm of rodents. While most Eutherian mammal spermatozoa are relatively simple cells with round or paddle-shaped heads, rodent sperm are often more complex and, in many species, display a striking apical hook. The function of the sperm hook remains largely unknown, but it has been hypothesized to have evolved as an adaptation to inter-male sperm competition and thus has been implicated in increased swimming efficiency or in the formation of collective sperm movements. Here we empirically test these hypotheses within a single lineage of Peromyscus rodents, in which closely related species naturally vary in their mating systems, sperm head shapes, and propensity to form sperm aggregates of varying sizes. We performed sperm morphological analyses as well as in vitro analyses of sperm aggregation and motility to examine whether the sperm hook (i) morphologically varies across these species and (ii) associates with sperm competition, aggregation, or motility. We demonstrate inter-specific variation in the sperm hook and then show that hook width negatively associates with sperm aggregation and sperm swimming speed, signifying that larger hooks may be a hindrance to sperm movement within this group of mice. Finally, we confirmed that the sperm hook hinders motility within a subset of Peromyscus leucopus mice that spontaneously produced sperm with no or highly abnormal hooks. Taken together, our findings suggest that any adaptive value of the sperm hook is likely associated with a function other than inter-male sperm competition, such as interaction with ova or cumulous cells during fertilization, or migration through the complex female reproductive tract.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1358
Author(s):  
Emily R. A. Cramer ◽  
Eduardo Garcia-del-Rey ◽  
Lars Erik Johannessen ◽  
Terje Laskemoen ◽  
Gunnhild Marthinsen ◽  
...  

Sperm swimming performance affects male fertilization success, particularly in species with high sperm competition. Understanding how sperm morphology impacts swimming performance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm length, relative flagellum length (with the flagellum generating forward thrust), and relative midpiece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus canariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and the other islands. Sperm swimming speed correlated negatively with total sperm length, did not correlate with relative flagellum length, and correlated negatively with relative midpiece length (for Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of studies on passerine birds that do not support sperm morphology–swimming speed hypotheses. We suggest that the swimming mechanics of passerine sperm are sufficiently different from mammalian sperm that predictions from mammalian hydrodynamic models should no longer be applied for this taxon. While both sperm morphology and sperm swimming speed are likely under selection in passerines, the relationship between them requires further elucidation.


2020 ◽  
Author(s):  
Charel Reuland ◽  
Brett M Culbert ◽  
Erika Fernlund Isaksson ◽  
Ariel F Kahrl ◽  
Alessandro Devigili ◽  
...  

Abstract Higher social status is expected to result in fitness benefits as it secures access to potential mates. In promiscuous species, male reproductive success is also determined by an individual’s ability to compete for fertilization after mating by producing high-quality ejaculates. However, the complex relationship between a male’s investment in social status and ejaculates remains unclear. Here, we examine how male social status influences ejaculate quality under a range of social contexts in the pygmy halfbeak Dermogenys collettei, a small, group-living, internally fertilizing freshwater fish. We show that male social status influences ejaculate traits, both in the presence and absence of females. Dominant males produced faster swimming and more viable sperm, two key determinants of ejaculate quality, but only under conditions with frequent male–male behavioral interactions. When male–male interactions were experimentally reduced through the addition of a refuge, differences in ejaculate traits of dominant and subordinate males disappeared. Furthermore, dominant males were in a better condition, growing faster, and possessing larger livers, highlighting a possible condition dependence of competitive traits. Contrary to expectations, female presence or absence did not affect sperm swimming speed or testes mass. Together, these results suggest a positive relationship between social status and ejaculate quality in halfbeaks and highlight that the strength of behavioral interactions between males is a key driver of social-status-dependent differences in ejaculate traits.


2020 ◽  
Vol 33 (12) ◽  
pp. 1783-1794
Author(s):  
Sheri L. Johnson ◽  
Kirill Borziak ◽  
Torsten Kleffmann ◽  
Patrice Rosengrave ◽  
Steve Dorus ◽  
...  

2020 ◽  
Author(s):  
Sheri L. Johnson ◽  
Kirill Borziak ◽  
Torsten Kleffmann ◽  
Patrice Rosengrave ◽  
Steve Dorus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document