temporal fine structure
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 50)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
pp. 1-14
Author(s):  
Octave Etard ◽  
Rémy Ben Messaoud ◽  
Gabriel Gaugain ◽  
Tobias Reichenbach

Abstract Speech and music are spectrotemporally complex acoustic signals that are highly relevant for humans. Both contain a temporal fine structure that is encoded in the neural responses of subcortical and cortical processing centers. The subcortical response to the temporal fine structure of speech has recently been shown to be modulated by selective attention to one of two competing voices. Music similarly often consists of several simultaneous melodic lines, and a listener can selectively attend to a particular one at a time. However, the neural mechanisms that enable such selective attention remain largely enigmatic, not least since most investigations to date have focused on short and simplified musical stimuli. Here, we studied the neural encoding of classical musical pieces in human volunteers, using scalp EEG recordings. We presented volunteers with continuous musical pieces composed of one or two instruments. In the latter case, the participants were asked to selectively attend to one of the two competing instruments and to perform a vibrato identification task. We used linear encoding and decoding models to relate the recorded EEG activity to the stimulus waveform. We show that we can measure neural responses to the temporal fine structure of melodic lines played by one single instrument, at the population level as well as for most individual participants. The neural response peaks at a latency of 7.6 msec and is not measurable past 15 msec. When analyzing the neural responses to the temporal fine structure elicited by competing instruments, we found no evidence of attentional modulation. We observed, however, that low-frequency neural activity exhibited a modulation consistent with the behavioral task at latencies from 100 to 160 msec, in a similar manner to the attentional modulation observed in continuous speech (N100). Our results show that, much like speech, the temporal fine structure of music is tracked by neural activity. In contrast to speech, however, this response appears unaffected by selective attention in the context of our experiment.


Author(s):  
Yazdan Pirouzmand ◽  
Ahmadreza Nazeri ◽  
Leyla Jalilvand Karimi ◽  
Alireza Akbarzadeh Baghban ◽  
Amir Majidpour

Background and Aim: Many aspects and features of auditory system can be improved by musical training. This study aimed to investigate the effects of a stringed musical instrument playing course on temporal resolution and temporal fine structure (TFS) processing. Methods: This analytical cross-sectional study was conducted on 44 normal-hearing adults aged 20–40 years divided to two groups. The first group included 22 stringed musical instruments players (13 males) with at least three years of experience, and the second group were 22 non- players (13 males). The random gap detection test (RGDT) was used to measure temporal resolution aspect of hearing. For TFS processing, latest version of temporal fine structure-adaptive frequency (TFS-AF) test was used. Results: The TFS-AF results showed no statistically significant difference between groups in different interaural phase differences (IPDs). The RGDT results showed significant differences between groups at 500, 1000 and 2000 Hz, but not at 4000 Hz. Spearman correlation test results showed no statistically significant correlation between the results of TFS-AF and RGDT. Conclusion: Musical training has no effect on TFS processing but considerably enhances gap detection ability. Their underlying mechanisms for TFS processing and gap detection are different.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 1271
Author(s):  
Arivudainambi Pitchaimuthu ◽  
Eshwari Ananth ◽  
Jayashree S Bhat ◽  
Somashekara Haralakatta Shivananjappa

Background: Children with reading disabilities (RD) exhibit difficulty in perceiving speech in background noise due to poor auditory stream segregation. There is a dearth of literature on measures of temporal fine structure sensitivity (TFS) and concurrent vowel perception abilities to assess auditory stream segregation in children with reading disabilities. Hence the present study compared temporal fine structure sensitivity (TFS) and concurrent vowel perception abilities between children with and without reading deficits. Method: The present research consisted of a total number of 30 participants, 15 children with reading disabilities (RD) and fifteen typically developing (TD) children within the age range of 7-14 years and were designated as Group 1 and Group 2 respectively. Both groups were matched for age, grade, and classroom curricular instructions. The groups were evaluated for TFS and concurrent vowel perception abilities and the performance was compared using independent ‘t’ test and repeated measure ANOVA respectively. Results: Results revealed that the children with RD performed significantly (p < 0.001) poorer than TD children on both TFS and concurrent vowel identification task. On concurrent vowel identification tasks, there was no significant interaction found between reading ability and F0 difference suggesting that the trend was similar in both the groups. Conclusion: The study concludes that the children with RD show poor temporal fine structure sensitivity and concurrent vowel identification scores compared to age and grade matched TD children owing to poor auditory stream segregation in children with RD.


2021 ◽  
Vol 150 (4) ◽  
pp. 2664-2676
Author(s):  
Vibha Viswanathan ◽  
Barbara G. Shinn-Cunningham ◽  
Michael G. Heinz

Author(s):  
Anupamaa Rampur ◽  
Dirk-Mathys Spangenberg ◽  
Grzegorz Stepniewski ◽  
Dominik Dobrakowski ◽  
Karol Tarnowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document