robin boundary value problem
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 0)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
İlker Gençtürk ◽  
Yankis R. Linares

Abstract In this paper, we study a Robin condition for the inhomogeneous Cauchy–Riemann equation w z ¯ = f {w_{\bar{z}}=f} in a ring domain R, by reformulating it as a Dirichlet boundary condition.


Author(s):  
Zeév Rudnick ◽  
Igor Wigman ◽  
Nadav Yesha

AbstractLet $$\Omega {\subset } {\mathbb {R}}^2$$ Ω ⊂ R 2 be a bounded planar domain, with piecewise smooth boundary $$\partial \Omega $$ ∂ Ω . For $$\sigma >0$$ σ > 0 , we consider the Robin boundary value problem $$\begin{aligned} -\Delta f =\lambda f, \qquad \frac{\partial f}{\partial n} + \sigma f = 0 \text{ on } \partial \Omega \end{aligned}$$ - Δ f = λ f , ∂ f ∂ n + σ f = 0 on ∂ Ω where $$ \frac{\partial f}{\partial n} $$ ∂ f ∂ n is the derivative in the direction of the outward pointing normal to $$\partial \Omega $$ ∂ Ω . Let $$0<\lambda ^\sigma _0\le \lambda ^\sigma _1\le \ldots $$ 0 < λ 0 σ ≤ λ 1 σ ≤ … be the corresponding eigenvalues. The purpose of this paper is to study the Robin–Neumann gaps $$\begin{aligned} d_n(\sigma ):=\lambda _n^\sigma -\lambda _n^0 . \end{aligned}$$ d n ( σ ) : = λ n σ - λ n 0 . For a wide class of planar domains we show that there is a limiting mean value, equal to $$2{\text {length}}(\partial \Omega )/{\text {area}}(\Omega )\cdot \sigma $$ 2 length ( ∂ Ω ) / area ( Ω ) · σ and in the smooth case, give an upper bound of $$d_n(\sigma )\le C(\Omega ) n^{1/3}\sigma $$ d n ( σ ) ≤ C ( Ω ) n 1 / 3 σ and a uniform lower bound. For ergodic billiards we show that along a density-one subsequence, the gaps converge to the mean value. We obtain further properties for rectangles, where we have a uniform upper bound, and for disks, where we improve the general upper bound.


2019 ◽  
Vol 8 (1) ◽  
pp. 1252-1285
Author(s):  
Yibin Zhang ◽  
Lei Shi

Abstract Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary and b(x) > 0 a smooth function defined on ∂Ω. We study the following Robin boundary value problem: $$\begin{array}{} \displaystyle \left\{ \begin{alignedat}{2} &{\it\Delta} u+u^p=0 &\quad& \text{in }{\it\Omega},\\ &u>0 &\quad& \text{in }{\it\Omega},\\ &\frac{\partial u}{\partial\nu} +\lambda b(x)u=0 &\quad& \text{on } \partial{\it\Omega}, \end{alignedat} \right. \end{array}$$ where ν denotes the exterior unit vector normal to ∂Ω, 0 < λ < +∞ and p > 1 is a large exponent. We construct solutions of this problem which exhibit concentration as p → +∞ and simultaneously as λ → +∞ at points that get close to the boundary, and show that in general the set of solutions of this problem exhibits a richer structure than the problem with Dirichlet boundary condition.


2017 ◽  
Vol 15 (1) ◽  
pp. 1549-1557 ◽  
Author(s):  
Yuhua Long ◽  
Baoling Zeng

Abstract In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.


2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Nikolai A. Simonov

AbstractA new Monte Carlo algorithm for solving the Robin boundary-value problem is described and applied to the calculation of the electron beam induced current in a simplified model of the imaging measurements.


2017 ◽  
Vol 2 (3) ◽  
pp. 120-124
Author(s):  
Shwan H. H. Al-Shatri ◽  
Karzan Wakil ◽  
Munira Ismail

A Robin problem is a mixed problem with a linear combination of Dirichlet and Neumann D-N conditions. The aim of this paper are presents a new boundary integral equation BIE method for the solution of unbounded Robin boundary value problem BVP in the simply connected domain. The method show how to reformulate the Robin boundary value problem BVP as Riemann-Hilbert problem RHP which lead to the system of integral equation, and the related differential equations are also created that give rise to unique solutions. Numerical results on several tests regions by the Nyström method NM with the trapezoidal rule TR are presented to clarify the solution technique for the Robin problem when the boundaries are sufficiently smooth.


Sign in / Sign up

Export Citation Format

Share Document