dimethyl benzene
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4431
Author(s):  
Jiří Czernek ◽  
Jiří Brus

A tetramer model was investigated of a remarkably stable iodine-containing supramolecular capsule that was most recently characterized by other authors, who described emergent features of the capsule’s formation. In an attempt to address the surprising fact that no strong pair-wise interactions between any of the respective components were experimentally detected in condensed phases, the DFT (density-functional theory) computational model was used to decompose the total stabilization energy as a sum of two-, three- and four-body contributions. This model considers complexes formed between either iodine or bromine and the crucial D4h-symmetric form of octaaryl macrocyclic compound cyclo[8](1,3-(4,6-dimethyl)benzene that is surrounded by arenes of a suitable size, namely, either corannulene or coronene. A significant enthalpic gain associated with the formation of investigated tetramers was revealed. Furthermore, it is shown that the total stabilization of these complexes is dominated by binary interactions. Based on these findings, comments are made regarding the experimentally observed behavior of related multicomponent mixtures.


2020 ◽  
Vol 73 (11) ◽  
pp. 1060
Author(s):  
Feng Guo ◽  
Changhua Su ◽  
Yuhang Fan ◽  
Wenbing Shi

A novel coordination polymer (CP) was constructed using 1,3-bis(4-carboxyphenoxy) propane (H2bcp), 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene (bimb), and NiII ions. [Ni(bcp)(bimb)]·H2O]n (1) shows an interesting 2D+2D → 3D inclined polyrotaxane topology. The structure was characterised by many methods. This work indicates that the flexible and neutral pyridine ligand plays a significant role in constructing CPs. Furthermore, 1 is a highly efficient catalyst for the reaction of CO2 and epoxides.


Chemosensors ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Ali Q. Alorabi ◽  
Mohamed Abdelbaset ◽  
Sami A. Zabin

In this paper, a Schiff base ligand 1-(2-thiophenylimino)-4-(N-dimethyl)benzene (SL1) bearing azomethine (>C=N-) and thiol (-SH) moieties capable of coordinating to metals and forming colored metal complexes was synthesized and examined as a colorimetric chemosensor. The sensing ability toward the metal ions of Cu2+, Cr3+, Fe2+ Ni2+, Co2+, Mg2+, Zn2+, Fe2+, Fe3+, NH4VO3 (V5+), Mn2+, Hg2+, Pb2+, and Al3+ was investigated in a mixture of H2O and dimethylformamide (DMF) solvent using the UV–Visible spectra monitoring method. The synthesized Schiff base ligand showed colorimetric properties with Cr3+, Fe2+, Fe3+, and Hg2+ ions, resulting in a different color change for each metal that could be identified easily with the naked eye. The UV–Vis spectra indicated a significant red shift (~69–288 nm) from the origin after the addition of the ligand to these metal ions, which may be due to ligand-to-metal charge-transfer (LMCT). On applying Job’s plot, it was indicated that the ligand binds to the metal ions in a 2:1 ligand-to-metal molar ratio. SL1 behaves as a bidentate ligand and binds through the N atom of the imine group and the S atom of the thiol group. The results indicate that the SL1 ligand is an appropriate coordination entity and can be developed for use as a chemosensor for the detection of Cr3+, Fe2+, Fe3+, and Hg2+ ions.


2019 ◽  
Vol 55 (26) ◽  
pp. 3701-3704 ◽  
Author(s):  
Yu-Dong Yang ◽  
Han-Yuan Gong

A new thermally activated all-hydrocarbon rigid macrocycle receptors system, cyclo[8](1,3-(4,6-dimethyl)benzene) (CDMB-8) has been reported.


Sign in / Sign up

Export Citation Format

Share Document