histone tail modification
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 1)

2020 ◽  
Vol 21 (3) ◽  
pp. 943 ◽  
Author(s):  
Anna M. Chiarella ◽  
Dongbo Lu ◽  
Nathaniel A. Hathaway

Proper regulation of the chromatin landscape is essential for maintaining eukaryotic cell identity and diverse cellular processes. The importance of the epigenome comes, in part, from the ability to influence gene expression through patterns in DNA methylation, histone tail modification, and chromatin architecture. Decades of research have associated this process of chromatin regulation and gene expression with human diseased states. With the goal of understanding how chromatin dysregulation contributes to disease, as well as preventing or reversing this type of dysregulation, a multidisciplinary effort has been launched to control the epigenome. Chemicals that alter the epigenome have been used in labs and in clinics since the 1970s, but more recently there has been a shift in this effort towards manipulating the chromatin landscape in a locus-specific manner. This review will provide an overview of chromatin biology to set the stage for the type of control being discussed, evaluate the recent technological advances made in controlling specific regions of chromatin, and consider the translational applications of these works.


2017 ◽  
Vol 44 (7) ◽  
pp. 655 ◽  
Author(s):  
Juri Battilana ◽  
Jake D. Dunlevy ◽  
Paul K. Boss

Some herbaceous characters in wine are attributed to the presence of aroma compounds collectively known as methoxypyrazines (MPs). In grape berries their formation has been hypothesised to start from a reaction of two amino acids or an amino acid and an unknown 1,2-dicarbonyl compound, leading to the formation of hydroxypyrazine, which is then enzymatically methylated to form a MP. The enzyme responsible of the formation of 3-isobutyl-2-methoxypyrazine has been recently identified as VvOMT3 whose regulation is still not understood. The concentration of MPs in grapes is known to be influenced by development, environmental stimuli and most importantly grape variety. In order to investigate the chromatin arrangement of that region a chromatin immunoprecipitation analysis has been performed and putative differences in epigenetic regulation of VvOMT3 spatially between the skin and flesh tissues and also temporally during fruit development have been detected. There are also allelic differences in VvOMT3 histone modifications which are maintained in subsequent generations. This study provides evidence of histone tail modification of the VvOMT3 locus in grapevine, which may play a role in the spatial and developmental regulation of the expression of this gene.


Sign in / Sign up

Export Citation Format

Share Document