specific manner
Recently Published Documents


TOTAL DOCUMENTS

2213
(FIVE YEARS 706)

H-INDEX

97
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Dylan Scott Eiger ◽  
Noelia Boldizsar ◽  
Christopher Cole Honeycutt ◽  
Julia Gardner ◽  
Stephen Kirchner ◽  
...  

Some G protein-coupled receptor (GPCR) ligands act as biased agonists which preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the chemokine GPCR CXCR3. The signaling profile of CXCR3 changed as it trafficked from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling was critical for biased activation of G proteins, β-arrestins, and ERK1/2. In CD8+ T cells, the chemokines promoted unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation was dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.


2022 ◽  
pp. gr.276103.121
Author(s):  
Daniel Melamed ◽  
Yuval Nov ◽  
Assaf Malik ◽  
Michael B Yakass ◽  
Evgeni Bolotin ◽  
...  

While it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the 'HbS mutation' when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible.


2022 ◽  
Author(s):  
Kar-Tong Tan ◽  
Michael Slevin ◽  
Matthew Meyerson ◽  
Heng Li

Nanopore long-read genome sequencing is emerging as a potential approach for the study of genomes including long repetitive elements like telomeres. Here, we report extensive basecalling induced errors at telomere repeats across nanopore datasets, sequencing platforms, basecallers, and basecalling models. We found that telomeres which are represented by (TTAGGG)n and (CCCTAA)n repeats in many organisms were frequently miscalled (~40-50% of reads) as (TTAAAA)n, or as (CTTCTT)n and (CCCTGG)n repeats respectively in a strand-specific manner during nanopore sequencing. We showed that this miscalling is likely caused by the high similarity of current profiles between telomeric repeats and these repeat artefacts, leading to mis-assignment of electrical current profiles during basecalling. We further demonstrated that tuning of nanopore basecalling models, and selective application of the tuned models to telomeric reads led to improved recovery and analysis of telomeric regions, with little detected negative impact on basecalling of other genomic regions. Our study thus highlights the importance of verifying nanopore basecalls in long, repetitive, and poorly defined regions of the genome, and showcases how such artefacts in regions like telomeres can potentially be resolved by improvements in nanopore basecalling models.


2022 ◽  
Vol 15 ◽  
Author(s):  
Samuel S. McAfee ◽  
Yu Liu ◽  
Roy V. Sillitoe ◽  
Detlef H. Heck

Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.


2022 ◽  
Author(s):  
Megumi Tsurumaki ◽  
Motofumi Saito ◽  
Masaru Tomita ◽  
Akio Kanai

The Candidate Phyla Radiation (CPR) is a large bacterial group consisting mainly of uncultured lineages. They have small cells and small genomes, and often lack ribosomal proteins L1, L9, and/or L30, which are basically ubiquitous in ordinary (non-CPR) bacteria. Here, we comprehensively analyzed the genomic information of CPR bacteria and identified their unique properties. In the distribution of protein lengths in CPR bacteria, the peak was at around 100–150 amino acids, whereas the position of the peak varies in the range of 100–300 amino acids in free-living non-CPR bacteria, and at around 100–200 amino acids in most symbiotic non-CPR bacteria. These results show that CPR bacteria have smaller proteins on average, like symbiotic non-CPR bacteria. We found that ribosomal proteins L28, L29, L32, and L33 are also deleted in CPR bacteria, in a lineage-specific manner. Moreover, the sequences of approximately half of all ribosomal proteins in CPR differ, in part, from those of non-CPR bacteria, with missing regions or specific added region. We also found that several regions of the 16S, 23S, and 5S rRNAs are lacking in CPR bacteria and that the total predicted length of the three rRNAs in CPR bacteria is smaller than that in non-CPR bacteria. The regions missing in the CPR ribosomal proteins and rRNAs are located near the surface of the ribosome, and some are close to one another. These observations suggest that ribosomes are smaller in CPR bacteria than in free-living non-CPR bacteria, with simplified surface structures.


2022 ◽  
Author(s):  
Jiahui Mou ◽  
Meijun Huang ◽  
Feifei Wang ◽  
Xiaoding Xu ◽  
Hanqi Xie ◽  
...  

Epigenetic alterations are widely linked with carcinogenesis, therefore becoming emerging therapeutic targets in the treatment of cancers, including breast cancer. HMGNs are nucleosome binding proteins, which regulate chromatin structures in a cell type- and disease-specific manner. However, the roles of HMGNs in the tumorigenesis of breast cancer are less known. In this study, we report that HMGNs are highly expressed in 3D-cultured breast cancer cells. HMGN5, a member of HMGNs, controls the proliferation, invasion and metastasis of breast cancer cells in vitro and in vivo. Clinically, HMGN5 is an unfavorable prognostic marker in patients. Mechanistically, HMGN5 is governed by active STAT3 transcriptionally and further escorts STAT3 to shape oncogenic chromatin landscape and transcriptional program. Lastly, we provide evidence that interference of HMGN5 by nanoparticle-packaged siRNA is potentially an effective approach in breast cancer treatment. Taken together, our findings reveal a novel feed-forward circuit between HMGN5 and STAT3 in promoting breast cancer tumorigenesis and suggest HMGN5 as a novel epigenetic therapeutic-target in STAT3-hyperactive breast cancer.


Development ◽  
2022 ◽  
Vol 149 (1) ◽  
Author(s):  
Bethany R. L. Aykroyd ◽  
Simon J. Tunster ◽  
Amanda N. Sferruzzi-Perri

ABSTRACT Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.


Author(s):  
Indu Khurana ◽  
Dev K Dutta ◽  
Mark T Schenkel

This article examines the process by which entrepreneurs identify and work with an arbitrage opportunity emerging from an episodic crisis. Although prior research has investigated the role of entrepreneurial characteristics and context on opportunity development, the specific manner in which these factors emerge in the course of opportunity development during a crisis remain underexplored. By adopting a qualitative approach grounded in case studies of eight entrepreneurs in the US distillery industry, this article addresses that gap by examining the process of arbitrage opportunity development during COVID-19. Our study reveals the primacy of both causation and effectuation-based entrepreneurial decision logics and the role of double-loop learning, as entrepreneurs interact with the time-compressed duration of the arbitrage opportunity. Implications and insights for entrepreneurs, researchers and policymakers are discussed.


2021 ◽  
Author(s):  
Angela Criscuolo ◽  
Palina Nepachalovich ◽  
Diego Fernando Garcia-del Rio ◽  
Mike Lange ◽  
Zhixu Ni ◽  
...  

Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is challenged by their low abundance and largely unknown, biological context-dependent structural diversity. Here we provide a holistic workflow based on the combination of bioinformatics and LC-MS/MS technologies to support identification and relative quantification of oxidized complex lipids in a modification type- and position-specific manner. The developed methodology was used to identify epilipidomics signatures of lean and obese individuals with and without type II diabetes. Characteristic signature of lipid modifications in lean individuals, dominated by the presence of modified octadecanoid acyl chains in phospho- and neutral lipids, was drastically shifted towards lipid peroxidation-driven accumulation of oxidized eicosanoids, suggesting significant alteration of endocrine signalling by oxidized lipids in metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document