standard quadratic program
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

Author(s):  
Jacek Gondzio ◽  
E. Alper Yıldırım

AbstractA standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.


Author(s):  
Y. Görkem Gökmen ◽  
E. Alper Yıldırım

AbstractThe problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of positive semidefinite and componentwise nonnegative matrices, one obtains the so-called doubly nonnegative relaxation, whose optimal value yields a lower bound on that of the original problem. We present a full algebraic characterization of the set of instances of standard quadratic programs that admit an exact doubly nonnegative relaxation. This characterization yields an algorithmic recipe for constructing such an instance. In addition, we explicitly identify three families of instances for which the doubly nonnegative relaxation is exact. We establish several relations between the so-called convexity graph of an instance and the tightness of the doubly nonnegative relaxation. We also provide an algebraic characterization of the set of instances for which the doubly nonnegative relaxation has a positive gap and show how to construct such an instance using this characterization.


Sign in / Sign up

Export Citation Format

Share Document