scholarly journals On standard quadratic programs with exact and inexact doubly nonnegative relaxations

Author(s):  
Y. Görkem Gökmen ◽  
E. Alper Yıldırım

AbstractThe problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of positive semidefinite and componentwise nonnegative matrices, one obtains the so-called doubly nonnegative relaxation, whose optimal value yields a lower bound on that of the original problem. We present a full algebraic characterization of the set of instances of standard quadratic programs that admit an exact doubly nonnegative relaxation. This characterization yields an algorithmic recipe for constructing such an instance. In addition, we explicitly identify three families of instances for which the doubly nonnegative relaxation is exact. We establish several relations between the so-called convexity graph of an instance and the tightness of the doubly nonnegative relaxation. We also provide an algebraic characterization of the set of instances for which the doubly nonnegative relaxation has a positive gap and show how to construct such an instance using this characterization.

Author(s):  
E. Alper Yıldırım

AbstractWe study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Yasunori Maekawa ◽  
Yoshihiro Ueda

In this paper, we study the dissipative structure of first-order linear symmetric hyperbolic system with general relaxation and provide the algebraic characterization for the uniform dissipativity up to order 1. Our result extends the classical Shizuta–Kawashima condition for the case of symmetric relaxation, with a full generality and optimality.


1991 ◽  
Vol 14 (4) ◽  
pp. 477-491
Author(s):  
Waldemar Korczynski

In this paper an algebraic characterization of a class of Petri nets is given. The nets are characterized by a kind of algebras, which can be considered as a generalization of the concept of the case graph of a (marked) Petri net.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Christian Grussler ◽  
Anders Rantzer

Abstract We address the issue of establishing standard forms for nonnegative and Metzler matrices by considering their similarity to nonnegative and Metzler Hessenberg matrices. It is shown that for dimensions n 3, there always exists a subset of nonnegative matrices that are not similar to a nonnegative Hessenberg form, which in case of n = 3 also provides a complete characterization of all such matrices. For Metzler matrices, we further establish that they are similar to Metzler Hessenberg matrices if n 4. In particular, this provides the first standard form for controllable third order continuous-time positive systems via a positive controller-Hessenberg form. Finally, we present an example which illustrates why this result is not easily transferred to discrete-time positive systems. While many of our supplementary results are proven in general, it remains an open question if Metzler matrices of dimensions n 5 remain similar to Metzler Hessenberg matrices.


1981 ◽  
Vol 19 (5) ◽  
pp. 929-955 ◽  
Author(s):  
Ov. Mekenyan ◽  
D. Bonchev ◽  
N. Trinajsti?

2015 ◽  
Vol 44 (2) ◽  
pp. 486-499
Author(s):  
Samuel Volkweis Leite ◽  
Alexander Prestel

Sign in / Sign up

Export Citation Format

Share Document