econ geol
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Maria A. Kokh ◽  
Clement Laskar ◽  
Gleb S. Pokrovski

<p>Knowledge of molybdenum (Mo) speciation under hydrothermal conditions is a key for understanding the formation of porphyry deposits which are the primary source of Mo. Existing experimental and theoretical studies have revealed a complex speciation, solubility and partitioning behavior of Mo in fluid-vapor-melt systems, depending on conditions, with the (hydrogen)molybdate (HMoO<sub>4</sub><sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>) ions and their ion pairs with alkalis in S and Cl-poor fluids [1-3], mixed oxy-chloride species in strongly acidic saline fluids [4, 5], and (hydrogen)sulfide complexes (especially, MoS<sub>4</sub><sup>2-</sup>) in reduced H<sub>2</sub>S-bearing fluids and vapors [6-8]. However, these available data yet remain discrepant and are unable to account for the observed massive transport of Mo in porphyry-related fluids revealed by fluid inclusion analyses demonstrating 100s ppm of Mo (e.g., [9]). A potential missing ligand for Mo may be the recently discovered trisulfur radical ion (S<sub>3</sub><sup>•-</sup>), which is predicted to be abundant in sulfate-sulfide rich acidic-to-neutral porphyry-like fluids [10]. We performed exploratory experiments of MoS<sub>2</sub> solubility in model sulfate-sulfide-S<sub>3</sub><sup>•-</sup>-bearing aqueous solutions at 300°C and 450 bar. We demonstrate that Mo can be efficiently transported by S<sub>3</sub><sup>•-</sup>-bearing fluids at concentrations ranging from several 10s ppm to 100s ppm, depending on the fluid pH and redox, whereas the available data on OH-Cl-S complexes cited above predict negligibly small (<100 ppb) Mo concentrations at our conditions. Work is in progress to extend the experiments to wider T-P-composition range of porphyry fluids and to quantitatively assess the role of S<sub>3</sub><sup>•-</sup> in Mo transport by geological fluids.</p><ul><li>1. Kudrin A.V. (1989) <em>Geochem. Int. </em><strong>26</strong>, 87–99.</li> <li>2. Minubayeva Z. and Seward T.M. (2010) <em>Geochim. Cosmochim. Acta</em> <strong>74</strong>, 4365–4374.</li> <li>3. Shang L.B. et al. (2020) <em>Econ. Geol. </em><strong>115</strong>, 661–669.</li> <li>4. Ulrich T. and Mavrogenes J. (2008) <em>Geochim. Cosmochim. Acta </em><strong>72</strong>, 2316-2330.</li> <li>5. Borg S. et al. (2012) <em>Geochim. Cosmochim. Acta</em> <strong>92</strong>, 292–307.</li> <li>6. Zhang L. et al. (2012) <em>Geochim. Cosmochim. Acta</em> <strong>77</strong>, 175–185.</li> <li>7. Kokh M.A. et al. (2016) <em>Geochim. Cosmochim. Acta </em><strong>187</strong>, 311–333.</li> <li>8. Liu W. et al. (2020) <em>Geochim. Cosmochim. Acta</em> <strong>290</strong>, 162–179.</li> <li>9. Kouzmanov K. and Pokrovski G.S. (2012) <em>Soc. Econ. Geol. Spec. Pub.</em> <strong>16</strong>, 573–618.</li> <li>10. Pokrovski G.S. and Dubessy J. (2015) <em>Earth Planet. Sci. Lett. </em><strong>411</strong>, 298–309.</li> </ul>


2020 ◽  
Author(s):  
Haoyang Zhou ◽  
Robert Trumbull ◽  
Ilya Veksler ◽  
Johannes Glodny ◽  
Ilya Bindeman

<p>The Upper Group 2 (UG2) chromitite layer in the upper Critical Zone of the Bushveld Complex, South Africa, is the world’s largest PGE orebody. The UG2 is typically 0.5 to 1.5 m thick and it consists of 75–90 modal % chromite with interstitial silicate and sulfide minerals. Although a minor component, phlogopite is important because it is a hydrous phase. It has been noted that the UG2 chromitite contains more abundant phlogopite (locally > 1 modal %) than the surrounding pyroxenite layers (Mathez and Mey, 2005). More and more studies suggest that water plays an important role in the UG2 chromite formation and in PGE enrichment or remobilization (e.g., Li et al., 2004; Mathez and Mey, 2005; Schannor et al., 2018). The source of the water is controversial, and this motivated our ongoing study of hydrous minerals in the UG2.</p><p>We determined the chemical composition and hydrogen isotope ratio of phlogopite from the chromitite layer and from the surrounding pyroxenite in drill cores from two sites the eastern and western Bushveld (Nkwe and Khuseleka, respectively). The δD values of phlogopite in chromitite from the eastern site are -38.2 to -25.5‰ (mean = -29.7‰, n = 6). The corresponding values from the western site are similar, with -34.6 to -31.6‰ (mean = -33.2‰, n = 6). The δD values of phlogopite from pyroxenite are more variable, ranging from -43.1 to -26.1‰ for the eastern site (mean = -32.9‰, n = 4) and from -38.7 to -26.1‰ for the western site (mean = -31.7‰, n = 3).</p><p>Published whole-rock δD values for silicate cumulate rocks in the upper Critical Zone are -93 to -55‰ (Mathez et al., 1994), which are similar to mantle values (-70±10%; Boettcher and O'neil, 1980) and are interpreted as magmatic.  In comparison, our δD values of phlogopite from UG2 are much higher and suggest a significant contribution of crustal fluids. Harris and Chaumba (2001) estimated a δD value of -22‰ for paleo-meteoric water in the Bushveld Complex. Given the relative homogeneity of the phlogopite δD data in both sites of the complex, and the primary appearance of the grains in thin section, we argue that the crustal fluids were incorporated in the magma before the crystallization of the UG2 layer. Triple oxygen isotopes will test our hypothesis further.</p><p> </p><p>References: Boettcher & O'neil (1980) Amer. Jour. Sci. 280A, 594–621. Harris & Chaumba (2001) J. Petrol. 42, 1321–1347. Li et al. (2004) Econ. Geol. 99, 173–184. Mathez et al. (1994) Econ. Geol. 89, 791–802. Mathez & Mey (2005) Econ. Geol. 100, 1616–1630. Schannor et al. (2018) Chem. Geol. 485, 100–112.</p>


2020 ◽  
Author(s):  
Fei Zhang ◽  
Ben J. Williamson ◽  
Hannah S.R. Hughes ◽  
Gavyn Rollinson

<p>Porphyry magmatic systems emplaced within carbonate host rocks constitute a major source of the world’s Cu, Mo, Pb, Zn and Au [1]. Mineralisation is generally either porphyry-style or endoskarn-style within, or porphyry-, exoskarn- or manto-style outside the porphyry intrusion(s) [1,2]. Genetic models for porphyry and skarn mineralisation are well established, however questions remain as to why endoskarn- rather than porphyry-style mineralisation predominates within certain systems and regions. This is the case in Japan, for example, where there are very few signs of porphyry mineralisation despite generally favourable geological conditions, but there are large endoskarn and exoskarn deposits [3]. Recent studies show that magmas can assimilate large volumes of crustal carbonates, potentially providing a significant amount of CO<sub>2</sub> to late and post-magmatic hydrothermal fluids [4]. High levels of CO<sub>2</sub> in magmatic-hydrothermal systems may favour endoskarn formation and affect metal fractionation and solubility of ore minerals [5]. In this contribution, we test the hypothesis that endoskarn alteration may eliminate porphyry-style Cu mineralisation and mobilise Cu into other parts of the pluton and surrounding carbonate wall-rocks (exoskarns).  </p><p>To address this hypothesis, the Daye ore district in the Middle-Lower Yangtze River metallogenic belt was selected for study as it hosts porphyry-, exoskarn- and endoskarn-styles of mineralisation [6]. The porphyry and skarn deposits lie within Late Mesozoic intrusions or along their contacts with Late Triassic carbonates. From among the many porphyry-related systems, the Tonglushan Fe-Cu-(Au) endoskarn-bearing system was selected for detailed field-, light microscopy-, cathodoluminescence-, SEM- and QEMSCAN®-based genetic studies. The current study is mainly based on a comparison of samples from a single core through altered granite, endoskarn and exoskarn. From preliminary data for the Tonglushan system, the granites distal to the endoskarn were affected by Na-Ca alteration (replacement of intermediate composition plagioclase with albite, calcite and chlorite, and hornblende with calcite and chlorite), potassic alteration (replacement of plagioclase with K-feldspar), and later quartz-calcite veining. The endoskarn, which shows relict minerals and textures from the granite, underwent: 1) sericitic alteration, 2) prograde endoskarn formation, 3) retrograde endoskarn formation, 4) potassic alteration and 5) late carbonate veining stage. The textural relationships of oxide minerals in exoskarn and endoskarn indicate that magnetite and hematite likely formed during Stage 3, whereas Cu-(Au) mineralisation in the exoskarn is considered to be genetically associated with the potassic alteration phase, with precipitation of sulphides caused by acid neutralisation within the carbonates.</p><p>References:</p><p>[1] Sillitoe R (2010) Econ Geol 105:3-41</p><p>[2] Meinert L D et al. (2005) Econ Geol 100:299-336</p><p>[3] Ishihara S (1980) Mining Geol 30:59-62</p><p>[4] Carter L B and Dasgupta R (2016) Geochem Geophys Geosyst 17:3893-3916</p><p>[5] Lowenstern J B (2001) Mineral Deposita 36:490-502</p><p>[6] Zhai Y S et al. (1996) Ore Geol Rev 11:229-248</p>


Sign in / Sign up

Export Citation Format

Share Document