food processing retention factor
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 1)

2020 ◽  
Vol 83 (3) ◽  
pp. 467-475 ◽  
Author(s):  
MAYUMI HACHINOHE ◽  
RYUSUKE FUJIMOTO ◽  
TAKURO SHINANO ◽  
EIICHI KOTAKE-NARA ◽  
SHIOKA HAMAMATSU ◽  
...  

ABSTRACT The behavior of radiocesium in wild animal meats upon cooking was investigated. The ratio of the concentration change (processing factor, Pf), remaining ratio (food processing retention factor, Fr), and removal ratio of radiocesium in the meats by grilling, boiling, and steaming were determined. Differences in cooking methods, rather than differences in meat parts or animal species, clearly influenced the Pf, Fr, and removal ratios. The mean Fr values were 0.9 (range, 0.7 to 1.0) for grilling, 0.6 (range, 0.4 to 0.7) for boiling, and 0.5 (range, 0.4 to 0.7) for steaming. The removal effect of grilling (11%) was lower than that of boiling (41%) or steaming (47%). The mean value of Pf was 1.2 (range, 1.1 to 1.6) for grilling, 0.8 (range, 0.6 to 0.9) for boiling, and 0.8 (range, 0.7 to 1.0) for steaming. The radiocesium concentration in the meats increased only upon grilling, but not by boiling or steaming. This difference is due to the lower removal effect of grilling than that of boiling and steaming. Therefore, boiling and steaming were more effective than grilling for removing radiocesium and reducing its concentration in wild animal meats. Furthermore, the ratio of water content fluctuations due to boiling was negatively correlated with Pf and Fr. It was evident that greater reductions in water content resulted in lower concentrations and improved radiocesium removal in the meats. These results suggest that some of the radiocesium naturally present in the meats is soluble in water and that the radiocesium dissolved in water can be removed from the meat with the release of water from the tissue. HIGHLIGHTS


2018 ◽  
Vol 81 (6) ◽  
pp. 881-885 ◽  
Author(s):  
MAYUMI HACHINOHE ◽  
NAOTO NIHEI ◽  
SHINICHI KAWAMOTO ◽  
SHIOKA HAMAMATSU

ABSTRACT To clarify the behavior of radioactive cesium (Cs) in buckwheat grains during milling and cooking processes, parameters such as processing factor (Pf) and food processing retention factor (Fr) were evaluated in two lots of buckwheat grains, R1 and R2, with different concentrations of radioactive Cs. Three milling fractions, the husk, bran, and flour fractions, were obtained using a mill and electric sieve. The radioactive Cs (134Cs + 137Cs) concentrations in husk and bran were higher than that in grain, whereas the concentration in flour was lower than that in grain. Pf values for the flours of R1 and R2 were 0.60 and 0.80, respectively. Fr values for the flours of R1 and R2 were 0.28 and 0.53, respectively. Raw buckwheat noodles (soba) were prepared using a mixture of buckwheat flour and wheat flour according to the typical recipe and were cooked with boiling water for 0.5, 1, and 2 min, followed by rinsing with water. Pf values for the soba boiled for 2 min (optimal for eating) made with R1 and R2 were 0.34 and 0.40, respectively. Fr values for these R1 and R2 samples were 0.55 and 0.66, respectively. Pf and Fr values for soba boiled for different times for both R1 and R2 were less than 0.6 and 0.8, respectively. Thus, buckwheat flour and its product, soba, cooked by boiling, are considered acceptable for human consumption according to the standard limit for radioactive Cs in buckwheat grains.


Sign in / Sign up

Export Citation Format

Share Document