air kerma rate
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Emily Simpson-Page ◽  
Lynsey Hamlett ◽  
Dominika Lew ◽  
Holly Stephens ◽  
Rachael Wilks ◽  
...  

2021 ◽  
Author(s):  
Emily Simpson-Page ◽  
Lynsey Hamlett ◽  
Dominika Lew ◽  
Holly Stephens ◽  
Rachael Wilks ◽  
...  

Abstract 3D printing in modern radiotherapy provides creative autonomy which can be a valuable tool for use in brachytherapy source calibration. Radiotherapy centres may verify their brachytherapy source strength with a calibrated Farmer chamber. For this purpose, a jig was designed, 3D printed and commissioned for in-air source strength calibration. Measurements on four afterloaders with varied equipment and environments were completed. A full uncertainty budget was developed and measurements with the in-air jig were consistently within 3% of the certificate source strength. By creating a jig that is able to be customised to multiple catheter sizes and cylindrical chamber designs, centres can be provided with the option of independently checking their source strength with ease and for little cost.


Metrologia ◽  
2021 ◽  
Vol 58 (1A) ◽  
pp. 06020
Author(s):  
J Ishii ◽  
T Kurosawa ◽  
M Kato ◽  
P Toroi ◽  
W-H Chu ◽  
...  

Author(s):  
Tania Afroz ◽  
Pretam K. Das ◽  
S. I. Chawdhury ◽  
Shudeb K. Roy

Aim of this work is to calibrate the high dose rate (HDR) brachytherapy source 60Co. The radioactive source calibration is a very important part of the quality assurance program for dosimetry of brachytherapy source. The goal of this project is the calibration of HDR Brachytherapy source in radiation therapy is the measurement of the air kerma rate which required actual dose to deliver. The source calibration is an essential part of the quality assurance program for dosimetry of brachytherapy source. This research will help the patient who is involving brachytherapy treatment. HDR brachytherapy source 60Co is inserted directly or in close to the tumor. Most commonly using method for calibration of HDR brachytherapy source 60CO is well type ionization chamber. Calibration of the radioactive source 60Co brachytherapy source is very important for the treatment of cancer patient. We have got the variation between RAKR from TPS and measured Air Kerma Rate of 60Co brachytherapy source are 3.2% and 3.04% and which give very good agreement with the Air Kerma Rate (RAKR) is 5% (from BEBIG protocol, Germany). So, our results were satisfied for brachytherapy treatment. From these results, it must be concluded that, 60Co brachytherapy source is suitable for brachytherapy cancer treatment. It is very difficult to calculate treatment deliver dose without calibrating AKR of HDR brachytherapy source. It is very important to verify the calculated Air Kerma Rate by TPS Air Kerma Rate.


2020 ◽  
Vol 190 (1) ◽  
pp. 84-89
Author(s):  
Milić Pejović ◽  
Emilija Živanović ◽  
Miloš Živanović

Abstract This paper presents experimental results of dynamic breakdown voltage and delay response as functions of gamma ray air kerma rate for xenon-filled tube at 2.7 mbar pressure. Gamma ray air kerma rate range was considered from 123 nGy h–1 up to 12.3 mGy h–1 in order to investigate the possibility of the application of this tube in gamma radiation dosimetry. It was shown that the variations of the above-mentioned parameters are considerable up to the dose rate of 1.23 μGy h–1, which points to the possibility for application in small dose rate gamma ray dosimetry. Physical processes that make dominant impact to dynamic breakdown voltage and delay response during xenon-filled tube irradiation are also discussed in the paper.


2020 ◽  
Vol 167 ◽  
pp. 108232
Author(s):  
Shih-Wen Wang ◽  
Yi-Chun Lin ◽  
Ming-Chen Yuan ◽  
Chien-Hau Chu ◽  
Tsi-Chian Chao

2020 ◽  
Vol 12 (4) ◽  
pp. 37-46 ◽  
Author(s):  
Valery P. Ramzaev ◽  
Anatoly N. Barkovsky

In 2015–2016, 13 forest and 7 virgin grassland plots located in the south-western districts of the Bryansk region were surveyed. The aim of the work was to experimentally test the possibility of using a method for calculating the dose rate of gamma radiation in air in radioactively contaminated forests in a remote period after the Chernobyl accident. According to the results of gamma-spectrometric analysis of soil samples obtained at the sites in another study, the values of inventory and vertical distribution of 137Cs in the upper 20 cm layer were established. In this paper, these data were used to calculate the air kerma rate using a method taken from literature. In addition, at the sites of soil sampling, ambient dose equivalent rate in air was measured, and the contribution of 137Cs to the total gamma dose rate was determined with a field gamma spectrometer-dosemeter. The measured values of the ambient dose equivalent rate from 137Cs correlated positively and statistically significantly with the calculated values of the air kerma rate. The Spearman correlation coefficient was 0.989 (P < 0.01) for the location “forest” and 0.893 (P < 0.05) for the location “grassland”. There was no statistically significant difference between the “forest” and “grassland” locations when analyzing the ratio of the measured dose rate values to the calculated dose rate values (the Mann-Whitney U test, P > 0.05). Results of this work show that, when calculating gamma radiation dose rate in air in forests at a remote stage after the Chernobyl accident, it is enough to know the 137Cs inventory in the upper 20 cm soil layer and a detailed picture of vertical distribution of the radionuclide in this layer. The presence of woody biomass can be neglected. This dose rate estimate is conservative. However, a degree of overestimation of the dose rate in air is small, within +10%, which is quite acceptable for determining the external effective dose rate for an individual in the radioactively contaminated forest.


Sign in / Sign up

Export Citation Format

Share Document