scholarly journals The Measurement of the Air-Kerma Rate in Air and a Solid Phantom with Ionization Chambers for a 192Ir HDR Brachytherapy Source

2020 ◽  
Vol Volume 12 ◽  
pp. 10821-10828
Author(s):  
Jing Zeng ◽  
Pengpeng Qu ◽  
Qingsong Pang ◽  
Ping Wang
Author(s):  
Tania Afroz ◽  
Pretam K. Das ◽  
S. I. Chawdhury ◽  
Shudeb K. Roy

Aim of this work is to calibrate the high dose rate (HDR) brachytherapy source 60Co. The radioactive source calibration is a very important part of the quality assurance program for dosimetry of brachytherapy source. The goal of this project is the calibration of HDR Brachytherapy source in radiation therapy is the measurement of the air kerma rate which required actual dose to deliver. The source calibration is an essential part of the quality assurance program for dosimetry of brachytherapy source. This research will help the patient who is involving brachytherapy treatment. HDR brachytherapy source 60Co is inserted directly or in close to the tumor. Most commonly using method for calibration of HDR brachytherapy source 60CO is well type ionization chamber. Calibration of the radioactive source 60Co brachytherapy source is very important for the treatment of cancer patient. We have got the variation between RAKR from TPS and measured Air Kerma Rate of 60Co brachytherapy source are 3.2% and 3.04% and which give very good agreement with the Air Kerma Rate (RAKR) is 5% (from BEBIG protocol, Germany). So, our results were satisfied for brachytherapy treatment. From these results, it must be concluded that, 60Co brachytherapy source is suitable for brachytherapy cancer treatment. It is very difficult to calculate treatment deliver dose without calibrating AKR of HDR brachytherapy source. It is very important to verify the calculated Air Kerma Rate by TPS Air Kerma Rate.


2016 ◽  
Vol 22 (3) ◽  
pp. 55-59
Author(s):  
Shwetha Bondel ◽  
Manickam Ravikumar

Abstract High dose rate (HDR) brachytherapy commonly employs a 192Ir encapsulated source to deliver high dose to the malignant tissues. Calibrations of brachytherapy sources are performed by the manufacturer using a well-type chamber or by in-air measurement using a cylindrical ionization chamber. Calibration using the latter involves measurements to be carried out at several distances and room scatter can also be determined. The aim of the present study is to estimate the scatter contribution from the walls, floor and various materials in the room in order to determine the reference air kerma rate of an 192Ir HDR brachytherapy source by in-air measurements and also to evaluate the error in the setup distance between the source centre and chamber centre. Air kerma measurements were performed at multiple distances from 10 cm to 40 cm between the source and chamber. The room scatter correction factor was determined using the iterative technique. The distance error of −0.094 cm and −0.112 cm was observed for chamber with and without buildup cap respectively. The scatter component ranges from 0.3% to 5.4% for the chamber with buildup cap and 0.3% to 4.6% without buildup cap for distances between 10 to 40 cm respectively. Since the average of the results at multiple distances is considered to obtain the actual air kerma rate of the HDR source, the seven distance method and iterative technique are very effective in determining the scatter contribution and the error in the distance measurements.


2020 ◽  
pp. 8-12
Author(s):  
Alexandr V. Oborin ◽  
Anna Y. Villevalde ◽  
Sergey G. Trofimchuk

The results of development of the national primary standard of air kerma, air kerma rate, exposure, exposure rate and energy flux for X-rays and gamma radiation GET 8-2011 in 2019 are presented according to the recommendations of the ICRU Report No. 90 “Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications”. The following changes are made to the equations for the units determination with the standard: in the field of X-rays, new correction coefficients of the free-air ionization chambers are introduced and the relative standard uncertainty of the average energy to create an ion pair in air is changed; in the field of gamma radiation, the product of the average energy to create an ion pair in air and the electron stopping-power graphite to air ratio for the cavity ionization chambers is changed. More accurate values of the units reproduced by GET 8-2019 are obtained and new metrological characteristics of the standard are stated.


2006 ◽  
Vol 33 (6Part2) ◽  
pp. 1983-1984
Author(s):  
S Davis ◽  
J Micka ◽  
L DeWerd ◽  
T Rusch

2021 ◽  
Author(s):  
Emily Simpson-Page ◽  
Lynsey Hamlett ◽  
Dominika Lew ◽  
Holly Stephens ◽  
Rachael Wilks ◽  
...  

Abstract 3D printing in modern radiotherapy provides creative autonomy which can be a valuable tool for use in brachytherapy source calibration. Radiotherapy centres may verify their brachytherapy source strength with a calibrated Farmer chamber. For this purpose, a jig was designed, 3D printed and commissioned for in-air source strength calibration. Measurements on four afterloaders with varied equipment and environments were completed. A full uncertainty budget was developed and measurements with the in-air jig were consistently within 3% of the certificate source strength. By creating a jig that is able to be customised to multiple catheter sizes and cylindrical chamber designs, centres can be provided with the option of independently checking their source strength with ease and for little cost.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Assef Firnando F ◽  
Okky Agassy Firmansyah ◽  
Cahya Wulandari ◽  
R. Pramuji Ramadhani S

This paper deals with the determination of the radiation quality correction factor (kQ) well-type ionization chamber for the measurement of Co-60 brachytherapy. The measurement of the brachytherapy source has been done in the hospital brachytherapy facilities. The measurement of air Kerma has been done using three different ionization chambers 0.6 cm3, 30 cm3, 80 cm3, which have calibration factor traceability for Co-60 and one well-type ionization chamber which calibrated for Ir-192. The determination of the radiation quality correction factor (kQ) was determined based on the results of the air Kerma ratio between measurements using ionization chambers, which have traceability to Co-60 and Ir-192 sources. The results of the measurement of the reference air Kerma rate (RAKR) obtained from the three chambers were 21.36, 19.87, 19.34 mGy.m2.h-1, while the results of measurements with ionization chambers get a value of 19.01 mGy.m2.h-1. The kQCal results from 0.6 cm3 ionization chamber get a value of 1.07. The kQCal value was compared with the value of Andreas Schuller’s et al. kQreff of 1.05 and get a deviation of 2.2%. Implementation of the booth kQ value on the results of the RAKR from the HDR1000Plus well-type ionization chamber in the measurement of brachytherapy in two different facilities gets maximal deviation 1.7% with dose value from Treatment Planning System (TPS). The deviation was in the acceptable range of ±5%. Based on this, the use of radiation quality correction factor (kQ) value can be implemented as one method if it does not have the traceability factor calibration of the Co-60 brachytherapy source.


Sign in / Sign up

Export Citation Format

Share Document