breakdown voltage
Recently Published Documents


TOTAL DOCUMENTS

2579
(FIVE YEARS 469)

H-INDEX

58
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
pp. 275-280
Author(s):  
Jean-Bernard Asse ◽  
G. Mengata Mengounou ◽  
Adolphe Moukengue Imano

Author(s):  
A. V. Kozyrev ◽  
V. Yu. Kozhevnikov ◽  
A. O. Kokovin ◽  
S. Yu. Medvedev
Keyword(s):  

Author(s):  
Shih-Sen Huang ◽  
Hsing-Che Tsai ◽  
Jerry Chang ◽  
Po-Chun Huang ◽  
Yun-Chien Cheng ◽  
...  

Abstract To simulate the I-V diagram of plasma homogeneous and filamentary discharge with equivalent circuit model more accurately, this study employed a breaker and passive circuit components and calculated the discharge parameters, such as equivalent discharge resistances and potential distribution etc., in atmospheric-pressure plasma jet (APPJ). In addition, this study calculated the gas-gap and dielectric capacitances of the APPJ and added a power supply equivalent circuit. Compared with other circuit models that adopted switches or a time-controlled current source to simulate the discharges, our present circuit model used a breakdown-voltage-controlled breaker for the homogeneous discharge and resistors with high-frequency switches for the filamentary discharge. We employed potential simulation to obtain the equivalent dielectric capacitance in the APPJ and then derived the gas-gap capacitance. We also replaced the ideal sine wave power supply with the equivalent circuit of the common double-peak-waveform power supply. The MATLAB Simulink was used to construct an equivalent circuit model and the discharge area ratio, breakdown voltage and filamentary equivalent resistance were obtained via I-V waveform fitting. We measured the plasma I-V waveform with a 20-kHz frequency, various voltages (6, 12, and 15 kV), a gas flow rate of 30 SLM, and two types of gas (Ar and He). The simulated and experimental I-V waveforms were very close under different conditions. In summary, the proposed equivalent circuit model more meaningfully describes the plasma physics to simulate homogenous and filamentary discharge, achieving results that were compatible with our experimental observations. The findings can help with investigating plasma discharge mechanisms and full-model simulations of plasma.


Author(s):  
Faruk Riskuwa Tambuwal ◽  
Samson Okikiola Oparanti ◽  
Ibrahim Abdulkadir ◽  
Umar Sadiq ◽  
Abdelghaffar Amoka Abdelmalik

2022 ◽  
Vol 1048 ◽  
pp. 89-100
Author(s):  
S. Tamil Selvi ◽  
Madhusudan Saranathan ◽  
Pa Hari Krishna Achuthan ◽  
R. Abhishek ◽  
Adhitya Ravi

An electricity board acquires several transformers from a manufacturer in a belief that their advertised lifetime of the transformer thus purchased is true. However, they don’t take in the case of negligence in maintenance of transformer, which is a strenuous job. The advertised thirty-year lifetime is reduced to a mere two-year lifetime, mainly because of the degradation of the insulation medium (Transformer oil), thus increasing losses in the transformer and decreasing its efficiency. The degradation of transformer oil leads to safety hazards like transformer bursting, consequently forcing the electricity board to replace the transformer, thus incurring huge amount of costs. This is the most relatable problem faced by the electricity board in every state. This research work aims at listing out various properties of transformer oil and ascertaining major impurities in a transformer oil by testing it using various techniques. The proposed work deals with long term observation and analysis of transformer oil to determine its degradation rate. Breakdown voltage, Moisture content, Resistivity, Acidity, Furan Analysis and Dissolved Gas Analysis were done using Mushroom electrodes, Karl Fischer Titration test, Tan delta test, Potassium Hydroxide Titration, High performance liquid chromatography, and dissolved gas analyzer respectively. The results reveal that, deviation of Breakdown Voltage, Moisture content, and 2-Furaldehyde (1197ppb) from the permissible limits can indicate the aging of the transformer.


2022 ◽  
Vol 31 (3) ◽  
pp. 1593-1610
Author(s):  
Sherif S. M. Ghoneim ◽  
Mosleh M. Alharthi ◽  
Ragab A. El-Sehiemy ◽  
Abdullah M. Shaheen

Plasma ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 12-29
Author(s):  
Ting Liu ◽  
Igor Timoshkin ◽  
Mark P. Wilson ◽  
Martin J. Given ◽  
Scott J. MacGregor

The present paper investigates the breakdown characteristics—breakdown voltage, with breakdown occurring on the rising edge of the applied HV impulses, and time to breakdown—for gases of significance that are present in the atmosphere: air, N2 and CO2. These breakdown characteristics have been obtained in a 100 µm gap between an HV needle and plane ground electrode, when stressed with sub-µs impulses of both polarities, with a rise time up to ~50 ns. The scaling relationships between the reduced breakdown field Etip/N and the product of the gas number density and inter-electrode gap, Nd, were obtained for all tested gases over a wide range of Nd values, from ~1020 m−2 to ~1025 m−2. The breakdown field-time to breakdown characteristics obtained at different gas pressures are presented as scaling relationships of Etip/N, Nd, and Ntbr for each gas, and compared with data from the literature.


2021 ◽  
pp. 2100961
Author(s):  
Jamal Aziz ◽  
Honggyun Kim ◽  
Shania Rehman ◽  
Muhammad Farooq Khan ◽  
Kalyani D. Kadam ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Daoqun Liu ◽  
Tingting Li ◽  
Bo Tang ◽  
Peng Zhang ◽  
Wenwu Wang ◽  
...  

Silicon avalanche photodetector (APD) plays a very important role in near-infrared light detection due to its linear controllable gain and attractive manufacturing cost. In this paper, a silicon APD with punch-through structure is designed and fabricated by standard 0.5 μm complementary metal oxide semiconductor (CMOS) technology. The proposed structure eliminates the requirements for wafer-thinning and the double-side metallization process by most commercial Si APD products. The fabricated device shows very low level dark current of several tens Picoamperes and ultra-high multiplication gain of ~4600 at near-infrared wavelength. The ultra-low extracted temperature coefficient of the breakdown voltage is 0.077 V/K. The high performance provides a promising solution for near-infrared weak light detection.


Sign in / Sign up

Export Citation Format

Share Document