modern radiotherapy
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 71)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
pp. 1-4
Author(s):  
Pierre Loap ◽  
Alfredo Mirandola ◽  
Ludovic De Marzi ◽  
Viviana Vitolo ◽  
Amelia Barcellini ◽  
...  

2021 ◽  
Author(s):  
Katia Manolova Sergieva

The clinical specialty of radiotherapy is an essential part of the multidisciplinary process of treatment of malignant neoplasms. Modern radiotherapy is a very complex process of treatment planning and delivery of radiation dose. Radiotherapy reached a very high degree of complexity and sophistication and expected to represent an added value for the cancer patients in terms of clinical outcomes and improved radiation protection. The concept of verifying the realized dose in the medical applications of ionizing radiation was introduced in the early 20th century shortly after the first application of X-rays for the treatment of cancer. Dosimetry audit identify areas for improvement and provide confidence in safety and efficacy, which are essential to creating a clinical environment of continuous development and improvement. Over the years, the audits have contributed to good dosimetry practice and accuracy of dose measurements in modern radiotherapy. Dosimetry audit ensures, that the correct therapeutic dose is delivered to the patients undergoing radiotherapy and play a key role in activities to create a good radiation protection and safety culture. Patient safety is of paramount importance to medical staff in radiotherapy centers and safety considerations are an element in all aspects of the day-to-day clinical activities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nahum Xicohténcatl-Hernández ◽  
Adriana Moreno-Ramirez ◽  
Guerda Massillon-JL

Due to the increase in the survival probability for patients treated with modern radiotherapy techniques to live enough for experimenting the late radiation effect, low dose outside the treatment volume becomes a concern. However, besides the absorbed dose, the beam quality outside the field edge should be taken into account. This work aimed at investigating the photon and electron fluence spectra outside the field edges for several small radiotherapy fields for determining the quality of the beams in order to better evaluate the secondary effect after modern radiotherapy treatments. Phase-space files of a 6 MV X-ray beam produced by a Varian iX linac for eight small fields of 0.7 × 0.7 cm2, 0.9 × 0.9 cm2, 1.8 × 1.8 cm2, 2.2 × 2.2 cm2, 2.7 × 2.7 cm2, 3.1 × 3.1 cm2, 3.6 × 3.6 cm2, and 4.5 × 4.5 cm2 and for the reference 10 × 10 cm2 field at SSD = 100 cm were generated using the BEAMnrc code. The photon and electron fluences in each field were calculated at 0.15, 1.35, and 9.85 cm water depth and several off-axis distances using FLURZnrc. The number of low-energy electrons between 1 and 10 keV at 2 cm outside the field edge increases by 60% compared to the central axis. Due to the relatively high linear energy transfer (LET) of these electrons, the results of this work should help to better evaluate the possible late effect of secondary radiation on healthy organs close to the tumor volume after radiotherapy treatment. We also observed high-energy electrons outside the field edge that are attributed to the leakage of the primary electron beam from the head of the linac. From a standpoint of radiological protection, these electrons should be taken into account when evaluating the dose delivered to the patient’s skin.


2021 ◽  
Vol 161 ◽  
pp. S800-S801
Author(s):  
O. Nouri ◽  
W. Mnejja ◽  
N. Fourati ◽  
F. Dhouib ◽  
W. Siala ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. S395-S396
Author(s):  
M. Jahreiß ◽  
K. Aben ◽  
A. Bertoen ◽  
M. Dirkx ◽  
M. Hoogeman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document