asymptotic integration
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 0)

Author(s):  
Burkhan Kalimbetov

In this paper we consider an initial problem for systems of differential equations of fractional order with a small parameter for the derivative. Regularization problem is produced, and algorithm for normal and unique solubility of general iterative systems of differential equations with partial derivatives is given. 


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879333 ◽  
Author(s):  
Zhiliang Huang ◽  
Tongguang Yang ◽  
Fangyi Li

Conventional decoupling approaches usually employ first-order reliability method to deal with probabilistic constraints in a reliability-based design optimization problem. In first-order reliability method, constraint functions are transformed into a standard normal space. Extra non-linearity introduced by the non-normal-to-normal transformation may increase the error in reliability analysis and then result in the reliability-based design optimization analysis with insufficient accuracy. In this article, a decoupling approach is proposed to provide an alternative tool for the reliability-based design optimization problems. To improve accuracy, the reliability analysis is performed by first-order asymptotic integration method without any extra non-linearity transformation. To achieve high efficiency, an approximate technique of reliability analysis is given to avoid calculating time-consuming performance function. Two numerical examples and an application of practical laptop structural design are presented to validate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document