cerium doping
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 25)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 66 (14) ◽  
pp. 2027-2035
Author(s):  
Xinyi Zhang ◽  
Mengmei Li ◽  
Laiqi Li ◽  
Lan Hu ◽  
Sufang Li

2021 ◽  
pp. 161486
Author(s):  
D.Yu. Kosyanov ◽  
Xin Liu ◽  
A.A. Vornovskikh ◽  
A.P. Zavjalov ◽  
A.M. Zakharenko ◽  
...  

Author(s):  
Zhilin Wang ◽  
Xieming Xu ◽  
Shuaihua Wang ◽  
Hui Xu ◽  
Weiwei Xu ◽  
...  

Author(s):  
Denis Yu. Kosyanov ◽  
Xin Liu ◽  
Anastasiia A. Vornovskikh ◽  
Andrey A. Leonov ◽  
Wanyuan Li ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 23095-23104
Author(s):  
Asim Riaz ◽  
Wojciech Lipiński ◽  
Adrian Lowe

Cerium doping into the V2O5 lattice forms a reversible V2O3/VO redox pair after sequential methane partial oxidation and CO2/H2O splitting reactions and produces syngas (H2, CO) with fast rates and high oxygen exchange capacity.


2021 ◽  
Vol 52 ◽  
pp. 412-420 ◽  
Author(s):  
Yangyang Wen ◽  
Zhiting Wei ◽  
Jiahao Liu ◽  
Rui Li ◽  
Ping Wang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18458-18467
Author(s):  
Defu Wang ◽  
Bangfu Huang ◽  
Zhe Shi ◽  
Hongming Long ◽  
Lu Li ◽  
...  

In the process of denitrification, the reaction between NO and CO (NO + CO → N2 + CO2) occurs. There will be a redox reaction between copper, nickel and cerium (Cu2+ + Ce3+ → Cu+ + Ce4+, Ni3+ + Ce3+ → Ni2+ + Ce4+).


2021 ◽  
Vol 133 ◽  
pp. 111018
Author(s):  
Nikoletta Laczai ◽  
László Kovács ◽  
Laura Kocsor ◽  
László Bencs

2020 ◽  
pp. 2151003
Author(s):  
Fen Wang ◽  
Kaiyu Liu ◽  
Zijing Wang ◽  
Jianfeng Zhu ◽  
Shu Yin

It is accepted that cerium doping is a great way to stabilize the structure of metallic oxides and improve the electrochemical performance of lithium (Li)-ion batteries (LIBs). Using a simple hydrothermal method, we doped Ce into tin-based oxides and synthesized Ce-doped SnO2@Ti3C2 nanocomposites with Ti3C2-MXene as a framework. The as-prepared Ce-doped SnO2@Ti3C2 nanocomposites show higher surface area and lower Li+ diffusion barrier, and the galvanostatic charge/discharge cycle stability is better than that of SnO2@Ti3C2. Additionally, the nanocomposites exhibit excellent initial discharge capacity (1482.6 mAh g[Formula: see text] at 100 mA g[Formula: see text] and a remarkable cycle rate performance. After 150 cycles, the achieved discharge capacity remained at 310.8 mAh g[Formula: see text]. This study provides a new method of using two-dimensional (2D) layered materials and rare earth elements as lithium-ion storage materials.


Sign in / Sign up

Export Citation Format

Share Document