Cerium Doping Double Perovskite Scintillator for Sensitive X‐ray Detection and Imaging

Author(s):  
Zhilin Wang ◽  
Xieming Xu ◽  
Shuaihua Wang ◽  
Hui Xu ◽  
Weiwei Xu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3876
Author(s):  
Jesús Valdés ◽  
Daniel Reséndiz ◽  
Ángeles Cuán ◽  
Rufino Nava ◽  
Bertha Aguilar ◽  
...  

The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1208
Author(s):  
Valeria Murgulov ◽  
Catherine Schweinle ◽  
Michael Daub ◽  
Harald Hillebrecht ◽  
Michael Fiederle ◽  
...  

A recent publication on single crystals of two-dimensional, layered organic–inorganic (BA)2CsAgBiBr7 double perovskite (BA+ = ) suggested the great potential of this semiconductor material in the detection of X-ray radiation. Our powder XRD measurement confirms the crystallinity and purity of all samples that crystallise in the monoclinic space group , while the single crystal XRD measurements reveal the dominant {001} lattice planes. The structure–property relationship is reflected in the lower resistivity values determined from the van der Pauw measurements (1.65–9.16 × 1010 Ωcm) compared to those determined from the IV measurements (4.19 × 1011–2.67 × 1012 Ωcm). The density of trap states and charge-carrier mobilities, which are determined from the IV measurements, are 1.12–1.76 × 1011 cm–3 and 10−5–10−4 cm2V–1s–1, respectively. The X-ray photoresponse measurements indicate that the (BA)2CsAgBiBr7 samples synthesised in this study satisfy the requirements for radiation sensors. Further advances in crystal growth are required to reduce the density of defects and improve the performance of single crystals.


2018 ◽  
Vol 74 (7) ◽  
pp. 1006-1009 ◽  
Author(s):  
Matthias Weil

Single crystals of Ba2K2Te2O9(dibarium dipotassium nonaoxidoditellurate), (I), Ba2KNaTe2O9(dibarium potassium sodium nonaoxidoditellurate), (II), and Ba2CaTeO6(dibarium calcium hexaoxidotellurate), (III), were obtained from KNO3/KI or KNO3/NaNO3flux syntheses in platinum crucibles for (I) and (II), or porcelain crucibles for (III). (I) and (II) are isotypic and are members of triple perovskites with general formulaA2[12co]A′[12co]B2[6o]B′[6o]O9. They crystallize in the 6H-BaTiO3structure family in space-group typeP63/mmc, with theA,A′,BandB′ sites being occupied by K, Ba, Te and a second Ba in (I), and in (II) by mixed-occupied (Ba/K), Ba, Te and Na sites, respectively. (III) adopts theA2[12co]B′[6o]B′′[6o]O6double perovskite structure in space-group typeFm-3m, with Ba, Ca and Te located on theA,B′ andB′′sites, respectively. The current refinement of (III) is based on single-crystal X-ray data. It confirms the previous refinement from X-ray powder diffraction data [Fuet al.(2008).J. Solid State Chem.181, 2523–2529], but with higher precision.


2013 ◽  
Vol 717 ◽  
pp. 133-138
Author(s):  
A. Awad Allah ◽  
M. Elhadi ◽  
O.A. Yassien

The crystal structure of both samples has been solved by powder X-ray diffraction, data in the tetragonal space group I4/m (a= b= 5.55182 Å, c =7.86955 A0) for SrLaFeNi0.5W0.5O6sample and (a=b= 5.49129Å, c= 7.82233Å) for CaLaFeNi0.5W0.5O6 sample, and shows an almost perfect ordering between Ni2+ and W5+ cations at the B-site of the perovskite structure. The FTIR spectrometer used of the powders showed that the spectra of both are very similar, showing two strong and well-defined absorption bands, typical of perovskite materials.


2009 ◽  
Vol 19 (25) ◽  
pp. 4382 ◽  
Author(s):  
Tapas Kumar Mandal ◽  
Mark Croft ◽  
Joke Hadermann ◽  
Gustaaf Van Tendeloo ◽  
Peter W. Stephens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document