quantum paradoxes
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 51 (5) ◽  
Author(s):  
Alessio Benavoli ◽  
Alessandro Facchini ◽  
Marco Zaffalon

AbstractWe argue that there is a simple, unique, reason for all quantum paradoxes, and that such a reason is not uniquely related to quantum theory. It is rather a mathematical question that arises at the intersection of logic, probability, and computation. We give our ‘weirdness theorem’ that characterises the conditions under which the weirdness will show up. It shows that whenever logic has bounds due to the algorithmic nature of its tasks, then weirdness arises in the special form of negative probabilities or non-classical evaluation functionals. Weirdness is not logical inconsistency, however. It is only the expression of the clash between an unbounded and a bounded view of computation in logic. We discuss the implication of these results for quantum mechanics, arguing in particular that its interpretation should ultimately be computational rather than exclusively physical. We develop in addition a probabilistic theory in the real numbers that exhibits the phenomenon of entanglement, thus concretely showing that the latter is not specific to quantum mechanics.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zheng-Hao Liu ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Mu Yang ◽  
Qiang Li ◽  
...  

AbstractThe Greenberger–Horne–Zeilinger (GHZ) paradox is an exquisite no-go theorem that shows the sharp contradiction between classical theory and quantum mechanics by ruling out any local realistic description of quantum theory. The investigation of GHZ-type paradoxes has been carried out in a variety of systems and led to fruitful discoveries. However, its range of applicability still remains unknown and a unified construction is yet to be discovered. In this work, we present a unified construction of GHZ-type paradoxes for graph states, and show that the existence of GHZ-type paradox is not limited to graph states. The results have important applications in quantum state verification for graph states, entanglement detection, and construction of GHZ-type steering paradox for mixed states. We perform a photonic experiment to test the GHZ-type paradoxes via measuring the success probability of their corresponding perfect Hardy-type paradoxes, and demonstrate the proposed applications. Our work deepens the comprehension of quantum paradoxes in quantum foundations, and may have applications in a broad spectrum of quantum information tasks.


2020 ◽  
Vol 50 (12) ◽  
pp. 1921-1933
Author(s):  
Giacomo Mauro D’Ariano

AbstractIt is almost universally believed that in quantum theory the two following statements hold: (1) all transformations are achieved by a unitary interaction followed by a von-Neumann measurement; (2) all mixed states are marginals of pure entangled states. I name this doctrine the dogma of purification ontology. The source of the dogma is the original von Neumann axiomatisation of the theory, which largely relies on the Schrődinger equation as a postulate, which holds in a nonrelativistic context, and whose operator version holds only in free quantum field theory, but no longer in the interacting theory. In the present paper I prove that both ontologies of unitarity and state-purity are unfalsifiable, even in principle, and therefore axiomatically spurious. I propose instead a minimal four-postulate axiomatisation: (1) associate a Hilbert space $${\mathcal {H}}_\text{A}$$ H A to each system$$\text{A}$$ A ; (2) compose two systems by the tensor product rule $${\mathcal {H}}_{\text{A}\text{B}}={\mathcal {H}}_\text{A}\otimes {\mathcal {H}}_\text{B}$$ H AB = H A ⊗ H B ; (3) associate a transformation from system $$\text{A}$$ A to $$\text{B}$$ B to a quantum operation, i.e. to a completely positive trace-non-increasing map between the trace-class operators of $$\text{A}$$ A and $$\text{B}$$ B ; (4) (Born rule) evaluate all joint probabilities through that of a special type of quantum operation: the state preparation. I then conclude that quantum paradoxes—such as the Schroedinger-cat’s, and, most relevantly, the information paradox—are originated only by the dogma of purification ontology, and they are no longer paradoxes of the theory in the minimal formulation. For the same reason, most interpretations of the theory (e.g. many-world, relational, Darwinism, transactional, von Neumann–Wigner, time-symmetric,...) interpret the same dogma, not the strict theory stripped of the spurious postulates.


2017 ◽  
Vol 31 (02) ◽  
pp. 1750007 ◽  
Author(s):  
A. V. Melkikh

Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.


Sign in / Sign up

Export Citation Format

Share Document