hierarchical wireless sensor networks
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 1)

Recently, Maitra et al. proposed an efficient and robust user authentication scheme for hierarchical wireless sensor networks. They claimed that their scheme does not need tamper-proof smart card and resisted different possible attacks include smart card stolen attack, impersonation attack, privileged insider attack, replay attack, off-line password guessing attack, theft attack, session key recovery attack, denial of service attack, and cluster head capture attack. However, we find some weaknesses of his scheme in this article. We show that their scheme is vulnerable to off-line password guessing with smart card stolen attack.


Recently, Maitra et al. proposed an efficient and robust user authentication scheme for hierarchical wireless sensor networks. They claimed that their scheme does not need tamper-proof smart card and resisted different possible attacks include smart card stolen attack, impersonation attack, privileged insider attack, replay attack, off-line password guessing attack, theft attack, session key recovery attack, denial of service attack, and cluster head capture attack. However, we find some weaknesses of his scheme in this article. We show that their scheme is vulnerable to off-line password guessing with smart card stolen attack.


Author(s):  
Nnaemeka Chiemezie Onuekwusi ◽  
Michael Chukwudi Ndinechi ◽  
Gordon Chiagozie Ononiwu ◽  
Onyebuchi Chikezie Nosiri

This article addresses the challenges of routing hole and network partitioning often experienced in hierarchical wireless sensor networks (WSNs). This developed model classifies network nodes into sets for effective energy management and formulates two cluster networks namely: switching and non-switching networks. Both networks are considered homogeneous and static WSNs and adopted approaches of residual energy, multi-hop and minimal distance as routing decision parameters. The switching network in addition introduces an energy switching factor as a major decision parameter for the switching of cluster head roles amongst cluster nodes. Network simulation was done using Truetime 2.0 and energy dissipation of the respective nodes and cluster heads was observed against a threshold. Results showed the introduction of the energy switching factor gave a significant energy balancing effect as nodes exhibited uniform energy dissipation. Furthermore, the residual energies for most nodes were above the threshold eliminating the possibility of the presence of routing hole and network partitioning.


Sign in / Sign up

Export Citation Format

Share Document