An Energy Balanced Routing Hole and Network Partitioning Mitigation Model for Homogeneous Hierarchical Wireless Sensor Networks

Author(s):  
Nnaemeka Chiemezie Onuekwusi ◽  
Michael Chukwudi Ndinechi ◽  
Gordon Chiagozie Ononiwu ◽  
Onyebuchi Chikezie Nosiri

This article addresses the challenges of routing hole and network partitioning often experienced in hierarchical wireless sensor networks (WSNs). This developed model classifies network nodes into sets for effective energy management and formulates two cluster networks namely: switching and non-switching networks. Both networks are considered homogeneous and static WSNs and adopted approaches of residual energy, multi-hop and minimal distance as routing decision parameters. The switching network in addition introduces an energy switching factor as a major decision parameter for the switching of cluster head roles amongst cluster nodes. Network simulation was done using Truetime 2.0 and energy dissipation of the respective nodes and cluster heads was observed against a threshold. Results showed the introduction of the energy switching factor gave a significant energy balancing effect as nodes exhibited uniform energy dissipation. Furthermore, the residual energies for most nodes were above the threshold eliminating the possibility of the presence of routing hole and network partitioning.

2021 ◽  
Vol 17 (2) ◽  
pp. 155014772098032
Author(s):  
Jiliang Zhou ◽  
Ziqiang Lin

Clustering technology is one of the crucial technologies to prolong the lifetime in wireless sensor networks. However, most cluster schemes choose cluster head randomly to send data without considering load balancing and security. In addition, some cluster heads in the highly active area may be overloaded, while others in the low active area may be overloaded, which may easily lead to extreme imbalance in task allocation. Our research on relevant literature shows that the existing authentication schemes do not fully consider the load balancing of cluster heads, while the load balancing schemes ignore the security authentication of cluster heads. Therefore, this article effectively combines load balancing and security verification, and proposes a lightweight load balancing and verification scheme (secure load and energy balancing) based on clustered wireless sensor networks. Secure load and energy balancing implements cluster head’s authentication and confidentiality and integrity of all messages in load balancing. This scheme not only effectively maintains the energy balance of the whole network but also successfully improves the security overhead, thus prolonging the network lifetime. The simulation results show that compared with other similar schemes, this scheme has higher packet forwarding rate, longer network life, and lower overhead. This further proves that the scheme is energy-saving, safe, dynamic, stable, and sustainable.


2012 ◽  
Vol 2 (2) ◽  
pp. 85-87 ◽  
Author(s):  
Sawroop Kaur ◽  
Deepak Prashar ◽  
Rita Rani

Clustering in wireless sensor network is important to increase the lifetime of sensor network. LEACH protocol is one of the clustering routing protocols in wireless sensor networks. In LEACH each node has the equal probability to be a cluster head, due to which the energy dissipation of every node is balanced. In LEACH protocol, time is divided into many rounds and in each round, all the nodes wishes to be cluster head according to a predefined criterion. This paper focuses on the approach that how could the number of cluster heads are limited in the network, if we limit the number of cluster head to a percentage of total nodes in the network, we can increase the lifetime of the network and decrease the energy dissipation per node. These functions can be used to enhance the performance of cluster-based wireless sensor networks in terms of lifetime and throughput.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2760
Author(s):  
Sandrine Mukase ◽  
Kewen Xia ◽  
Abubakar Umar

Wireless sensor networks have attracted worldwide attention in recent years. The failure of the nodes is caused by unequal energy dissipation. The reasons that cause unequal energy dissipation are, first and foremost, the distance between the nodes and the base station, and secondly, the distance between the nodes themselves. In wireless sensor networks, the location of the base station has a substantial impact on the network’s lifetime effectiveness. An improved genetic algorithm based on the crossover elitist conservation genetic algorithm (CECGA) is proposed to optimize the base station location, while for clustering, the K-medoids clustering (KMC) algorithm is used to determine optimal medoids among sensor nodes for choosing the appropriate cluster head. The idea is to decrease the communication distance between nodes and the cluster heads as well as the distance among nodes. For data routing, a multi-hop technique is used to transmit data from the nodes to the cluster head. Implementing an evolutionary algorithm for this optimization problem simplifies the problem with improved computational efficiency. The simulation results prove that the proposed algorithm performed better than compared algorithms by reducing the energy use of the network, which results in increasing the lifetime of the nodes, thereby improving the whole network.


2020 ◽  
pp. 1135-1149
Author(s):  
Miralda Cuka ◽  
Donald Elmazi ◽  
Takaaki Inaba ◽  
Tetsuya Oda ◽  
Makoto Ikeda ◽  
...  

Cluster formation and cluster head selection are important problems in Wireless Sensor Network (WSN) applications and can drastically affect the network's communication energy dissipation. However, selecting the cluster head is not easy in different environments which may have different characteristics. In order to deal with this problem, in this paper, we implement an integrated fuzzy-based system for controlling sensor speed in WSNs. Different from our previous work, we consider 4 input linguistic parameters: Remaining Power of Sensor (RPS), Degree of Number of Neighbor Nodes (D3N), Distance from Cluster Centroid (DCC) and Sensor Speed (SS) for selection of the cluster-head and the control of sensor speed. By controlling the sensor speed, we are able to predict whether the node will leave or stay in the cluster. We evaluate the proposed system by simulations and show that the system has a good behavior.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Sign in / Sign up

Export Citation Format

Share Document