skew adjacency matrix
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 35 ◽  
pp. 365-375
Author(s):  
Matt Hudelson ◽  
Judi McDonald ◽  
Enzo Wendler

B. Shader and W. So introduced the idea of the skew adjacency matrix. Their idea was to give an orientation to a simple undirected graph G from which a skew adjacency matrix S(G) is created. The -adjacency matrix extends this idea to an arbitrary field F. To study the underlying undirected graph, the average -characteristic polynomial can be created by averaging the characteristic polynomials over all the possible orientations. In particular, a Harary-Sachs theorem for the average-characteristic polynomial is derived and used to determine a few features of the graph from the average-characteristic polynomial.


Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1303-1312 ◽  
Author(s):  
Yong Lu ◽  
Ligong Wang ◽  
Qiannan Zhou

Let G? be an oriented graph and S(G?) be its skew-adjacency matrix, where G is called the underlying graph of G?. The skew-rank of G?, denoted by sr(G?), is the rank of S(G?). Denote by d(G) = |E(G)|-|V(G)| + ?(G) the dimension of cycle spaces of G, where |E(G)|, |V(G)| and ?(G) are the edge number, vertex number and the number of connected components of G, respectively. Recently, Wong, Ma and Tian [European J. Combin. 54 (2016) 76-86] proved that sr(G?) ? r(G) + 2d(G) for an oriented graph G?, where r(G) is the rank of the adjacency matrix of G, and characterized the graphs whose skew-rank attain the upper bound. However, the problem of the lower bound of sr(G?) of an oriented graph G? in terms of r(G) and d(G) of its underlying graph G is left open till now. In this paper, we prove that sr(G?) ? r(G)-2d(G) for an oriented graph G? and characterize the graphs whose skew-rank attain the lower bound.


Author(s):  
Shi-Cai Gong ◽  
Xueliang Li ◽  
Guanghui Xu

Let S(G^σ) be the skew-adjacency matrix of an oriented graph Gσ. The skew energy of G^σ is the sum of all singular values of its skew-adjacency matrix S(G^σ). This paper first establishes an integral formula for the skew energy of an oriented graph. Then, it determines all oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with m (n ≤ m < 2(n − 2)) arcs, which is analogous to the conjecture for the energy of undirected graphs proposed by Caporossi et al. [G. Caporossi, D. Cvetkovic, I. Gutman, and P. Hansen. Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy. J. Chem. Inf. Comput. Sci., 39:984–996, 1999].


10.37236/2864 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Cui Denglan ◽  
Hou Yaoping

An oriented graph ${G^{\sigma}}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge of $G$ a direction so that ${G^{\sigma}}$ becomes a directed graph. $G$ is called the underlying graph of ${G^{\sigma}}$ and we denote by $S({G^{\sigma}})$ the skew-adjacency matrix of ${G^{\sigma}}$ and its spectrum $Sp({G^{\sigma}})$ is called the skew-spectrum of ${G^{\sigma}}$. In this paper, the skew spectra of two orientations of the Cartesian products are discussed, as applications, new families of oriented bipartite graphs ${G^{\sigma}}$ with $Sp({G^{\sigma}})={\bf i} Sp(G)$ are given and the orientation of a product graph with maximum skew energy is obtained.


10.37236/643 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Yaoping Hou ◽  
Tiangang Lei

An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given.


10.37236/270 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryan Shader ◽  
Wasin So

An oriented graph $G^{\sigma}$ is a simple undirected graph $G$ with an orientation $\sigma$, which assigns to each edge a direction so that $G^{\sigma}$ becomes a directed graph. $G$ is called the underlying graph of $G^{\sigma}$, and we denote by $Sp(G)$ the adjacency spectrum of $G$. Skew-adjacency matrix $S( G^{\sigma} )$ of $G^{\sigma}$ is introduced, and its spectrum $Sp_S( G^{\sigma} )$ is called the skew-spectrum of $G^{\sigma}$. The relationship between $Sp_S( G^{\sigma} )$ and $Sp(G)$ is studied. In particular, we prove that (i) $Sp_S( G^{\sigma} ) = {\bf i} Sp(G)$ for some orientation $\sigma$ if and only if $G$ is bipartite, (ii) $Sp_S(G^{\sigma}) = {\bf i} Sp(G)$ for any orientation $\sigma$ if and only if $G$ is a forest, where ${\bf i}=\sqrt{-1}$.


10.37236/141 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Feng-Gen Lin ◽  
Lian-Zhu Zhang

The importance of Pfaffian orientations stems from the fact that if a graph $G$ is Pfaffian, then the number of perfect matchings of $G$ (as well as other related problems) can be computed in polynomial time. Although there are many equivalent conditions for the existence of a Pfaffian orientation of a graph, this property is not well-characterized. The problem is that no polynomial algorithm is known for checking whether or not a given orientation of a graph is Pfaffian. Similarly, we do not know whether this property of an undirected graph that it has a Pfaffian orientation is in NP. It is well known that the enumeration problem of perfect matchings for general graphs is NP-hard. L. Lovász pointed out that it makes sense not only to seek good upper and lower bounds of the number of perfect matchings for general graphs, but also to seek special classes for which the problem can be solved exactly. For a simple graph $G$ and a cycle $C_n$ with $n$ vertices (or a path $P_n$ with $n$ vertices), we define $C_n$ (or $P_n)\times G$ as the Cartesian product of graphs $C_n$ (or $P_n$) and $G$. In the present paper, we construct Pfaffian orientations of graphs $C_4\times G$, $P_4\times G$ and $P_3\times G$, where $G$ is a non bipartite graph with a unique cycle, and obtain the explicit formulas in terms of eigenvalues of the skew adjacency matrix of $\overrightarrow{G}$ to enumerate their perfect matchings by Pfaffian approach, where $\overrightarrow{G}$ is an arbitrary orientation of $G$.


Sign in / Sign up

Export Citation Format

Share Document