scholarly journals On the Skew Spectra of Cartesian Products of Graphs

10.37236/2864 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Cui Denglan ◽  
Hou Yaoping

An oriented graph ${G^{\sigma}}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge of $G$ a direction so that ${G^{\sigma}}$ becomes a directed graph. $G$ is called the underlying graph of ${G^{\sigma}}$ and we denote by $S({G^{\sigma}})$ the skew-adjacency matrix of ${G^{\sigma}}$ and its spectrum $Sp({G^{\sigma}})$ is called the skew-spectrum of ${G^{\sigma}}$. In this paper, the skew spectra of two orientations of the Cartesian products are discussed, as applications, new families of oriented bipartite graphs ${G^{\sigma}}$ with $Sp({G^{\sigma}})={\bf i} Sp(G)$ are given and the orientation of a product graph with maximum skew energy is obtained.

10.37236/643 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Yaoping Hou ◽  
Tiangang Lei

An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given.


10.37236/270 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryan Shader ◽  
Wasin So

An oriented graph $G^{\sigma}$ is a simple undirected graph $G$ with an orientation $\sigma$, which assigns to each edge a direction so that $G^{\sigma}$ becomes a directed graph. $G$ is called the underlying graph of $G^{\sigma}$, and we denote by $Sp(G)$ the adjacency spectrum of $G$. Skew-adjacency matrix $S( G^{\sigma} )$ of $G^{\sigma}$ is introduced, and its spectrum $Sp_S( G^{\sigma} )$ is called the skew-spectrum of $G^{\sigma}$. The relationship between $Sp_S( G^{\sigma} )$ and $Sp(G)$ is studied. In particular, we prove that (i) $Sp_S( G^{\sigma} ) = {\bf i} Sp(G)$ for some orientation $\sigma$ if and only if $G$ is bipartite, (ii) $Sp_S(G^{\sigma}) = {\bf i} Sp(G)$ for any orientation $\sigma$ if and only if $G$ is a forest, where ${\bf i}=\sqrt{-1}$.


Author(s):  
Shi-Cai Gong ◽  
Xueliang Li ◽  
Guanghui Xu

Let S(G^σ) be the skew-adjacency matrix of an oriented graph Gσ. The skew energy of G^σ is the sum of all singular values of its skew-adjacency matrix S(G^σ). This paper first establishes an integral formula for the skew energy of an oriented graph. Then, it determines all oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with m (n ≤ m < 2(n − 2)) arcs, which is analogous to the conjecture for the energy of undirected graphs proposed by Caporossi et al. [G. Caporossi, D. Cvetkovic, I. Gutman, and P. Hansen. Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy. J. Chem. Inf. Comput. Sci., 39:984–996, 1999].


10.37236/3331 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
A. Anuradha ◽  
R. Balakrishnan ◽  
Xiaolin Chen ◽  
Xueliang Li ◽  
Huishu Lian ◽  
...  

A graph $G$ is said to have a parity-linked orientation $\phi$ if every even cycle $C_{2k}$ in $G^{\phi}$ is evenly (resp. oddly) oriented whenever $k$ is even (resp. odd). In this paper, this concept is used to provide an affirmative answer to the following conjecture of D. Cui and Y. Hou [D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electronic J. Combin. 20(2):#P19, 2013]: Let $G=G(X,Y)$ be a bipartite graph. Call the $X\rightarrow Y$ orientation of $G,$ the canonical orientation. Let $\phi$ be any orientation of $G$ and let $Sp_S(G^{\phi})$ and $Sp(G)$ denote respectively the skew spectrum of $G^{\phi}$ and the spectrum of $G.$ Then $Sp_S(G^{\phi}) = {\bf{i}} Sp(G)$ if and only if $\phi$ is switching-equivalent to the canonical orientation of $G.$ Using this result, we determine the switch for a special family of oriented hypercubes $Q_d^{\phi},$ $d\geq 1.$ Moreover, we give an orientation of the Cartesian product of a bipartite graph and a graph, and then determine the skew spectrum of the resulting oriented product graph, which generalizes a result of Cui and Hou. Further this can be used to construct new families of oriented graphs with maximum skew energy.


Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1303-1312 ◽  
Author(s):  
Yong Lu ◽  
Ligong Wang ◽  
Qiannan Zhou

Let G? be an oriented graph and S(G?) be its skew-adjacency matrix, where G is called the underlying graph of G?. The skew-rank of G?, denoted by sr(G?), is the rank of S(G?). Denote by d(G) = |E(G)|-|V(G)| + ?(G) the dimension of cycle spaces of G, where |E(G)|, |V(G)| and ?(G) are the edge number, vertex number and the number of connected components of G, respectively. Recently, Wong, Ma and Tian [European J. Combin. 54 (2016) 76-86] proved that sr(G?) ? r(G) + 2d(G) for an oriented graph G?, where r(G) is the rank of the adjacency matrix of G, and characterized the graphs whose skew-rank attain the upper bound. However, the problem of the lower bound of sr(G?) of an oriented graph G? in terms of r(G) and d(G) of its underlying graph G is left open till now. In this paper, we prove that sr(G?) ? r(G)-2d(G) for an oriented graph G? and characterize the graphs whose skew-rank attain the lower bound.


The skew spectrum and skew energy of an oriented graph are respectively the set of eigenvalues of the adjacency matrix of and the sum of the absolute values of the eigen values of the adjacency matrix of . In this work, we find and study the skew spectrum and the skew energy of Hadamard graph for a particular orientation.


2019 ◽  
Vol 29 (03) ◽  
pp. 535-559 ◽  
Author(s):  
Huy Tài Hà ◽  
Kuei-Nuan Lin ◽  
Susan Morey ◽  
Enrique Reyes ◽  
Rafael H. Villarreal

Let [Formula: see text] be a weighted oriented graph and let [Formula: see text] be its edge ideal. Under a natural condition that the underlying (undirected) graph of [Formula: see text] contains a perfect matching consisting of leaves, we provide several equivalent conditions for the Cohen–Macaulayness of [Formula: see text]. We also completely characterize the Cohen–Macaulayness of [Formula: see text] when the underlying graph of [Formula: see text] is a bipartite graph. When [Formula: see text] fails to be Cohen–Macaulay, we give an instance where [Formula: see text] is shown to be sequentially Cohen–Macaulay.


2019 ◽  
Vol 35 ◽  
pp. 365-375
Author(s):  
Matt Hudelson ◽  
Judi McDonald ◽  
Enzo Wendler

B. Shader and W. So introduced the idea of the skew adjacency matrix. Their idea was to give an orientation to a simple undirected graph G from which a skew adjacency matrix S(G) is created. The -adjacency matrix extends this idea to an arbitrary field F. To study the underlying undirected graph, the average -characteristic polynomial can be created by averaging the characteristic polynomials over all the possible orientations. In particular, a Harary-Sachs theorem for the average-characteristic polynomial is derived and used to determine a few features of the graph from the average-characteristic polynomial.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1990
Author(s):  
Germain Pastén ◽  
Oscar Rojo ◽  
Luis Medina

For α∈[0,1], let Aα(Gσ)=αD(G)+(1−α)A(Gσ), where G is a simple undirected graph, D(G) is the diagonal matrix of its vertex degrees and A(Gσ) is the adjacency matrix of the signed graph Gσ whose underlying graph is G. In this paper, basic properties of Aα(Gσ) are obtained, its positive semidefiniteness is studied and some bounds on its eigenvalues are derived—in particular, lower and upper bounds on its largest eigenvalue are obtained.


10.37236/7276 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Songling Shan ◽  
Xiaowei Yu

An antimagic labeling of a directed graph $D$ with $n$ vertices and $m$ arcs is a bijection from the set of arcs of $D$ to the integers $\{1, \cdots, m\}$ such that all $n$ oriented vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of all arcs entering that vertex minus the sum of labels of all arcs leaving it. An undirected graph $G$ is said to have an antimagic orientation if $G$ has an orientation which admits an antimagic labeling. Hefetz, Mütze, and Schwartz conjectured that every connected undirected graph admits an antimagic orientation. In this paper, we support this conjecture by proving that every biregular bipartite graph admits an antimagic orientation.


Sign in / Sign up

Export Citation Format

Share Document