server collaboration
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 3)

H-INDEX

0
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8500
Author(s):  
Jinho Park ◽  
Kwangsue Chung

Recent years have witnessed a growth in the Internet of Things (IoT) applications and devices; however, these devices are unable to meet the increased computational resource needs of the applications they host. Edge servers can provide sufficient computing resources. However, when the number of connected devices is large, the task processing efficiency decreases due to limited computing resources. Therefore, an edge collaboration scheme that utilizes other computing nodes to increase the efficiency of task processing and improve the quality of experience (QoE) was proposed. However, existing edge server collaboration schemes have low QoE because they do not consider other edge servers’ computing resources or communication time. In this paper, we propose a resource prediction-based edge collaboration scheme for improving QoE. We estimate computing resource usage based on the tasks received from the devices. According to the predicted computing resources, the edge server probabilistically collaborates with other edge servers. The proposed scheme is based on the delay model, and uses the greedy algorithm. It allocates computing resources to the task considering the computation and buffering time. Experimental results show that the proposed scheme achieves a high QoE compared with existing schemes because of the high success rate and low completion time.


Author(s):  
Yingwei Zhang ◽  
Yiqiang Chen ◽  
Hanchao Yu ◽  
Xiaodong Yang ◽  
Ruizhe Sun ◽  
...  

Surface electromyography (sEMG) array based gesture recognition, which is widely-used, could provide natural surfaces for human-computer interaction. Currently, most existing gesture recognition methods with sEMG array only work with the fixed and pre-defined electrodes configuration. However, changes in the number of electrodes (i.e., increment or decrement) is common in real scenarios due to the variability of physiological electrodes. In this paper, we study this challenging problem and propose a random forest based ensemble learning method, namely feature incremental and decremental ensemble learning (FIDE). FIDE is able to support continuous changes in the number of electrodes by dynamically maintaining the matrix sketches of every sEMG electrode and spatial structure of sEMG array. To evaluate the performance of FIDE, we conduct extensive experiments on three benchmark datasets, including NinaPro, CSL-hdemg, and CapgMyo. Experimental results demonstrate that FIDE outperforms other state-of-the-art methods and has the potential to adapt to the evolution of electrodes in the changing environments. Moreover, based on FIDE, we implement a multi clients/server collaboration system, namely McS, to support feature adaption in real-world environment. By collecting sEMG using two clients (smartphone and personal computer) and adaptively recognizing gestures in the cloud server, FIDE significantly improves the gesture recognition accuracy in electrode increment and decrement circumstances.


Author(s):  
Changyan Yi ◽  
Jun Cai ◽  
Tong Zhang ◽  
Kun Zhu ◽  
Bing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document