scholarly journals Adaptive Boundary Control for a Certain Class of Reaction–Advection–Diffusion System

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2224
Author(s):  
Oscar F. Murillo-García ◽  
Francisco Jurado

Several phenomena in nature are subjected to the interaction of various physical parameters, which, if these latter are well known, allow us to predict the behavior of such phenomena. In most cases, these physical parameters are not exactly known, or even more these are unknown, so identification techniques could be employed in order to estimate their values. Systems for which their inputs and outputs vary both temporally and spatially are the so-called distributed parameter systems (DPSs) modeled through partial differential equations (PDEs). The way in which their parameters evolve with respect to time may not always be known and may also induce undesired behavior of the dynamics of the system. To reverse the above, the well-known adaptive boundary control technique can be used to estimate the unknown parameters assuring a stable behavior of the dynamics of the system. In this work, we focus our attention on the design of an adaptive boundary control for a parabolic type reaction–advection–diffusion PDE under the assumption of unknown parameters for both advection and reaction terms and Robin and Neumann boundary conditions. An identifier PDE system is established and parameter update laws are designed following the certainty equivalence approach with a passive identifier. The performance of the adaptive Neumann stabilizing controller is validated via numerical simulation.

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1854
Author(s):  
Eduardo Cruz-Quintero ◽  
Francisco Jurado

There are physical phenomena, involving diffusion and structural vibrations, modeled by partial differential equations (PDEs) whose solution reflects their spatial distribution. Systems whose dynamics evolve on an infinite-dimensional Hilbert space, i.e., infinite-dimensional systems, are modeled by PDEs. The aim when designing a controller for infinite-dimensional systems is similar to that for finite-dimensional systems, i.e., the control system must be stable. Another common goal is to design the controller in such a way that the response of the system does not be affected by external disturbances. The controller design for finite-dimensional systems is not an easy task, so, the controller design for infinite-dimensional systems is even more challenging. The backstepping control approach is a dominant methodology for boundary feedback design. In this work, we try with the backstepping design for the boundary control of a reaction-advection-diffusion (R-A-D) equation, namely, a type parabolic PDE, but with constant coefficients and Neumann boundary conditions, with actuation in one of these latter. The heat equation with Neumann boundary conditions is considered as the target system. Dynamics of the open- and closed-loop solution of the PDE system are validated via numerical simulation. The MATLAB®-based numerical algorithm related with the implementation of the control scheme is here included.


2002 ◽  
Vol 124 (3) ◽  
pp. 435-440 ◽  
Author(s):  
Rong-Fong Fung ◽  
Jinn-Wen Wu ◽  
Pai-Yat Lu

This paper proposes an adaptive boundary control to an axially moving string system, which couples with a mass-damper-spring (MDS) controller at its right-hand-side (RHS) boundary. Unknown parameters appearing in the system equation are assumed constant and estimated on-line by using adaptation laws. The adaptive computed-torque control algorithm applied to robot manipulators of lumped systems is extended to design the adaptive boundary controller for the coupling system. It is found that the control force and update laws depend only on the displacement, velocity and slope of the string at the RHS boundary. Lyapunov stability guarantees the convergence of the tracking error to zero. Finally, the performance of the proposed controller is demonstrated by numerical simulations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
B. Chentouf ◽  
N. Smaoui ◽  
A. Alalabi

In this paper, we study the nonlinear adaptive boundary control problem of the modified generalized Korteweg–de Vries–Burgers equation (MGKdVB) when the spatial domain is 0,1. Four different nonlinear adaptive control laws are designed for the MGKdVB equation without assuming the nullity of the physical parameters ν, μ, γ1, and γ2 and depending whether these parameters are known or unknown. Then, using Lyapunov theory, the L2-global exponential stability of the solution is proven in each case. Finally, numerical simulations are presented to illustrate the developed control schemes.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Sign in / Sign up

Export Citation Format

Share Document