bioequivalence assessment
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 14 ◽  
Author(s):  
Francis Micheal ◽  
Mohanlal Sayana ◽  
Rajendra Prasad ◽  
Balamurali Musuvathi Motiala

Background: In the drug development process, an assessment of bioequivalence is an integral part. For the evaluation of generics against the comparator, average bioequivalence approach is the gold standard method. In the recent past, there were many discussions on whether we have the adequate tool to evaluate generics and thereby drug interchangeability (prescribability and switchability) issue is addressed as average bioequivalence approach just considers population mean. Hence, the alternative approaches like population bioequivalence and individual bioequivalence assessment approaches arise as different variances like inter/ intra-subject variance and subject-by-formulation variance along with population mean are considered. Objectives: Methoxsalen, in combination with long-wave UVA radiation, is used in the symptomatic management certain psoriasis. The study was aimed to establish the bioequivalence (BE) of a newly developed methoxsalen capsule (MTX test) with that of a reference methoxsalen capsule (MTX reference) using multiple BE methods (i.e., average [ABE], population [PBE], and individual [IBE]) by utilizing a new LC–MS/MS method. Methods: This is an open-label, randomized, balanced, two-treatment, three-period, three-sequence, crossover, single-dose (20 mg, 2 × 10 mg capsules), comparative, oral BE study conducted in 52 healthy, adult males under fasting conditions. Along with various pharmacokinetic (PK) parameters ABE, PBE, and IBE were also determined in the single study. Results: : A non-compartmental model best described the concentration–time data of both MTX test and reference. Both the formulations demonstrated nearly similar values of BE parameters (i.e., AUCo–t, AUC0–∞, Cmax, Tmax, and t1/2). For MTX test, the observed Cmax, AUC0–t, and AUC0–∞ were 125.16±81.53 ng/mL, 313.73±260.86 ng h/mL, and 321.25±271.85 ng h/mL, respectively. For MTX reference, the values were 127.63±71.60 ng/mL, 329.11±252.91 ng h/mL, and 335.48±264.54 ng h/mL, respectively. The bioanalytical method was validated over the concentration range 0.100–100.00ng/mL and the coefficient of determination (r2) was ≥ 0.9991. The sensitivity of the method was 0.100 ng/mL with the accuracy and precision values of 115% and 10.54%, respectively. Conclusion: A single dose of MTX test met the ABE criteria of 80.00% –125.00% for Cmax, AUCo–t, and AUC0–∞, against MTX reference. The study outcome by PBE and IBE approaches proved that MTX Test was bio-inequivalent to MTX reference. Using multiple BE assessment methods in a single BE study is a novel approach and may overcome shortcomings of conventional bioequivalence assessment methods.


2020 ◽  
Vol 23 ◽  
pp. 437-450
Author(s):  
Seeprarani Rath ◽  
Ashmita Ramanah ◽  
Charles Bon ◽  
Isadore Kanfer

Purpose: The main aim of the current research was to develop and apply a dermatopharmacokinetic (DPK) approach for the bioequivalence assessment of metronidazole (MTZ) topical cream products, indicated in the treatment of rosacea. Methods: A DPK methodology using tape stripping (TS) technique was developed by investigating the factors that may influence the TS results viz. tapes, dose durations, number of tapes to be used, pressure application, dose applied and gravimetric analysis of the tapes. An initial dose duration study was performed on 6 healthy participants to determine an appropriate application time duration using the Emax model. The SC thickness was normalised between participants using TEWL measurements. A pivotal study was conducted using both the arms of 10 healthy human participants to demonstrate the ability of the TS method for bioequivalence assessment by comparing the reference product to itself as a positive control and including products with higher and lower strengths of MTZ to serve as negative controls in order to confirm bioinequivalence. Results: Whereas the reference was found to be bioequivalent when compared to itself, the creams containing 0.56% and 0.95% MTZ (negative controls) were not bioequivalent (bioinequivalent). Furthermore, another product containing 0.75% MTZ was also assessed and was found to be bioequivalent to the reference product. In addition, the use of both forearms of each participant offered an important advantage of significantly reducing the number of human subjects required to demonstrate BE with a high statistical power of > 80%. Conclusion: The data obtained provides compelling evidence that the developed TS method has the potential to be a cost-effective surrogate alternative for lengthy and expensive clinical trials. Consequently, its application can facilitate faster development of generic products which would, in turn, lower the economic burden of healthcare.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
C.-M. Tseng ◽  
C.-C. Huang ◽  
M.-C. Ho ◽  
Y.-A. Chen ◽  
Y.-H. Shieh ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 112-125
Author(s):  
Francis Micheal ◽  
Mohanlal Sayana ◽  
Rajendra Prasad ◽  
Balamurali Musuvathi Motilal

Background: Bioequivalence studies are a vital part of drug development. The average bioequivalence approach is the standard method of assessment to conclude whether the generic product is bioequivalent to the innovator product. Of late, debates are on whether the average bioequivalence approach adequately addresses drug interchangeability as it considers only population mean for the evaluation especially when highly variable drug products and narrow therapeutic index drugs are dealt with. Hence, the alternative approaches like population bioequivalence and individual bioequivalence assessment approaches emerge as they consider inter/intra-subject variance and subject- by-formulation variance along with population mean. Objectives: The objective of the study was to apply different bioequivalence assessment approaches in a replicate bioequivalence study to evaluate the drug interchangeability. Methods: This was an open-label, single-dose, randomized, balanced, two-treatment, three-period, three-sequence, partial replicate crossover bioequivalence study of omeprazole enteric-coated tablet 20 mg conducted on 48 normal healthy subjects under fed conditions. The plasma concentration of omeprazole was analyzed by a validated bioanalytical method to determine the pharmacokinetic and statistical parameters to assess average bioequivalence, population bioequivalence, and individual bioequivalence. Results: In this study, test formulation was shown to be bio-inequivalent to the reference formulation by average bioequivalence, population bioequivalence, and individual bioequivalence approaches. Conclusion: The outcome of the evaluation clearly states that the bioequivalence outcome of all these approaches are the same. Obviously, it does not mean that these three approaches provide the same outcome though the consideration of variances varies. Certainly, population bioequivalence and individual bioequivalence approach will be more accurate for the assessment of drug interchangeability.


Sign in / Sign up

Export Citation Format

Share Document