partially acidulated phosphate rock
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

1997 ◽  
Vol 37 (8) ◽  
pp. 1019 ◽  
Author(s):  
M. J. McLaughlin ◽  
P. G. Simpson ◽  
M. K. Smart ◽  
N. Fleming ◽  
D. P. Stevens ◽  
...  

Summary. This study investigated whether changing phosphatic fertiliser type affects the accumulation of cadmium (Cd) and fluorine (F) in pasture herbage. North Carolina phosphate rock, and partially acidulated fertilisers derived from this rock, generally have higher Cd and F concentrations compared with single superphosphate currently manufactured in Australia. Clover herbage from sites of the National Reactive Phosphate Rock trial was collected and analysed for concentrations of Cd (11 sites) and F (4 sites). A comparison was made between pastures fertilised with 4 rates of single superphosphate, North Carolina phosphate rock, and partially acidulated phosphate rock having Cd concentrations of 283, 481 and 420 mg/kg P respectively, and F concentrations of 170, 271 and 274 g/kg P respectively. One site used Hamrawein (Egypt) phosphate rock (HRP) having a Cd and F concentration of 78 mg Cd/kg P and 256 g F/kg P respectively. To help identify differences in herbage Cd concentrations between sites, unfertilised soils from each site were analysed for total and extractable Cd contents. At one site Cd concentrations in bulk herbage (clover, grasses and weeds) were related to infestation of the pasture by capeweed (Arctotheca calendula L. Levyns). There were no significant differences between F in herbage from plots fertilised with either single superphosphate, partially acidulated phosphate rock or North Carolina phosphate rock, or between sites. Concentrations of F in herbage were low, generally less than 10 mg/kg. However, there were large differences in Cd concentrations in herbage between sites, while differences between fertiliser treatments were small in comparison. The site differences were only weakly related to total or extractable (0.01 mol CaCl2/L) Cd concentrations in soil. Significant differences in Cd concentrations in clover due to fertiliser type were found at 5 sites. North Carolina phosphate rock treatments had significantly higher Cd concentrations in clover compared with single superphosphate at 2 sites. Partially acidulated phosphate rock treatments had significantly higher Cd concentrations in clover compared with single superphosphate at 4 sites. At the site where Hamrawein was tested, this treatment had significantly lower Cd concentrations in clover compared with both single superphosphate and North Carolina phosphate rock treatments.


1995 ◽  
Vol 35 (3) ◽  
pp. 387 ◽  
Author(s):  
LM Condron ◽  
HJ Di ◽  
KM Goh ◽  
AS Campbell ◽  
R Harrison

The agronomic performances of some longlife superphosphate (LSP) and partially acidulated phosphate rock (PAPR) fertilizers were compared with single superphosphate in glasshouse pot trials over 9-10 months using a range of New Zealand soils. The fertilizers used differed in the type (origin) of phosphate rock (PR), the acid to rock ratio used in the production of LSP, percentage acidulation of PAPR, and incorporation of elemental sulfur into LSP. The agronomic effectiveness of the fertilizers studied was primarily influenced by the type of PR and percentage acidulation of PAPR, but not by the acid to rock ratio. Variations in the agronomic effectiveness of LSP and PAPR fertilizers made from different PRs did not reflect the relative solubilities of the original PRs. This was mainly attributed to alterations in the chemistry and consequent solubility of PR which occurred during fertilizer manufacture. Plant phosphorus uptake was highly correlated with fertilizer solubility in 2% citric and 2% formic acids. The relative agronomic effectiveness of LSP and PAPR fertilizers was not significantly related to any single soil property.


Soil Research ◽  
1994 ◽  
Vol 32 (1) ◽  
pp. 95 ◽  
Author(s):  
HJ Di ◽  
LM Condron ◽  
AS Campbell ◽  
KM Goh ◽  
IS Cornforth

The agronomic effectiveness of partially acidulated phosphate rock (PAPR) fertilizers depends on the proportion of water soluble P present and the long-term release of P from the unacidulated residual phosphate rock (water-insoluble residue) in the soil environment. The relative reactivity of water-insoluble residues in a range of partially acidulated phosphate rock (PAPR) fertilizers was assessed according to chemical solubility, and was found to be lower than the corresponding original PRs. Two causes were identified for the reduced formic acid solubility of water-insoluble residues: (i) some preferential dissolution of more reactive apatite components (i.e. higher carbonate substituted apatite) during partial acidulation as indicated by reductions in the molar apatite C:P ratio of the residual PRs compared with the corresponding original PRs, and (ii) acid-insoluble metal (Fe-Al-Mg)phosphate and/or fluoride complexes formed on the surface of residual PRs during partial acidulation with commercial-grade phosphoric acid, which were partially soluble in alkaline ammonium citrate. These two mechanisms accounted for most of the solubility differences observed for 'medium' reactive PRs (Khouribga, Arad), compared with only half for more reactive PRs (North Carolina, Gafsa). The conclusion from this study is that partial acidulation may not be an ideal method for the manufacture of fertilizers containing fast and slow release (i.e. PR) components, particularly when highly reactive PRs such as North Carolina are used.


1991 ◽  
Vol 29 (3) ◽  
pp. 295-307 ◽  
Author(s):  
P. W. G. Sale ◽  
D. K. Friesen ◽  
G. J. Blair

Sign in / Sign up

Export Citation Format

Share Document