bézout’s identity
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

Author(s):  
Cyril Cayron

Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplanes for dimensions higher than 3. Here, a method is presented to find them. Equivalently, it gives the solutions of the N-dimensional Bézout's identity associated with the Miller indices of the hyperplane.


Algorithms ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 262 ◽  
Author(s):  
Swantje Romig ◽  
Luc Jaulin ◽  
Andreas Rauh

In recent years, many applications, as well as theoretical properties of interval analysis have been investigated. Without any claim for completeness, such applications and methodologies range from enclosing the effect of round-off errors in highly accurate numerical computations over simulating guaranteed enclosures of all reachable states of a dynamic system model with bounded uncertainty in parameters and initial conditions, to the solution of global optimization tasks. By exploiting the fundamental enclosure properties of interval analysis, this paper aims at computing invariant sets of nonlinear closed-loop control systems. For that purpose, Lyapunov-like functions and interval analysis are combined in a novel manner. To demonstrate the proposed techniques for enclosing invariant sets, the systems examined in this paper are controlled via sliding mode techniques with subsequently enclosing the invariant sets by an interval based set inversion technique. The applied methods for the control synthesis make use of a suitably chosen Gröbner basis, which is employed to solve Bézout’s identity. Illustrating simulation results conclude this paper to visualize the novel combination of sliding mode control with an interval based computation of invariant sets.


ISRN Algebra ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Thomas Jeffery ◽  
Rajesh Pereira

We use matrix techniques to give simple proofs of known divisibility properties of the Fibonacci, Lucas, generalized Lucas, and Gaussian Fibonacci numbers. Our derivations use the fact that products of diagonal matrices are diagonal together with Bezout’s identity.


Sign in / Sign up

Export Citation Format

Share Document