pig manure
Recently Published Documents


TOTAL DOCUMENTS

1130
(FIVE YEARS 395)

H-INDEX

62
(FIVE YEARS 13)

2022 ◽  
Vol 305 ◽  
pp. 114374
Author(s):  
Qiong Hou ◽  
Sen Lin ◽  
Yuemin Ni ◽  
Longren Yao ◽  
Shan Huang ◽  
...  

2022 ◽  
Vol 423 ◽  
pp. 126994
Author(s):  
Jianju Li ◽  
Haizhou Yang ◽  
Kena Qin ◽  
Liangliang Wei ◽  
Xinhui Xia ◽  
...  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Wenchong Lan ◽  
Chunxia Yao ◽  
Fan Luo ◽  
Zhi Jin ◽  
Siwen Lu ◽  
...  

Pig manure (PM) is often highly enriched in heavy metals, such as Cu and Zn, due to the wide use of feed additives. To study the potential risks of heavy metal accumulation in the soil and rice grains by the application of PM and other organic manure, a four-year field experiment was conducted in the suburb of Shanghai, southeast China. The contents of Cu, Zn, Pb, and Cd in the soils and rice plants by the treatments of PM and fungal culturing residues (FCR) show a trend of annual increase. Those in the soils and rice by the PM treatment are raised even more significantly. Cu and Zn contents in the soil and rice roots by the PM are significantly higher than those by the non-fertilizer control (CK) during the four years, and Pb and Cd also significantly higher than CK in the latter two years. Heavy metals taken up by the rice plants are mostly retained in the roots. Cu and Zn contents in the rice plants are in the decreasing order of roots > grains > stems > leaves, and Pb and Cd in the order of roots > stems > leaves > grains. Cu, Zn, Pb, and Cd contents in the soils by the PM treatment increase by 73%, 32%, 106%, and 127% on annual average, and those in the brown rice by 104%, 98%, 275%, and 199%, respectively. The contents of Cu, Zn, Pb, and Cd in the brown rice of the treatments are significantly correlated with those in the soils and rice roots (p < 0.05), suggesting the heavy metals accumulated in the rice grains come from the application of PM and FCR. Though the contents of heavy metals in the brown rice during the four experimental years are still within the safe levels, the risks of their accumulative increments, especially by long-term application of PM, can never be neglected.


2022 ◽  
Author(s):  
Modupe Olufemi Doyeni ◽  
Karolina Barčauskaitė ◽  
Kristina Bunevičienė ◽  
Kęstutis Venslauskas ◽  
Kestutis Navickas ◽  
...  

Abstract The race is on to achieve high level of efficiency in the attainment of circular economy in Agriculture especially with the aim of sustainable nitrogen management. This cycle in the agricultural sector cuts across livestock farming, agriculture induced waste generation, recycling and utilization, energy generation, crop production, ecosystem protection and environmental management through the mitigation of climate changes. In this work, we access the process and functionalities of livestock waste generated from the piggery farm and the combinations with other by-products such as biochar and ash in comparison with mineral fertilisation (MN) as sources of nitrogen (N) applied in agricultural soil. The experiment was performed in a controlled environment with wheat (Triticum aestivum L.) grown in a neutral and an acidic soil. Pig manure was used as the primary feedstock, fed, and processed to biogas and nutrient rich digestate by anaerobic digestion process. The digestate generated were amended with biochar and ash. In the course of the cultivation period, pig manure digestate with other co-amendments showed a positive influence on mobile potassium and phosphorus contents, biomass yield and nitrogen use efficiency. Greenhouse gas (GHG) emissions in the form of methane, carbon dioxide and nitrous oxide released in both soil types from the amendments were significantly lower when compared to mineral nitrogen treatment. The amendments did not have any significant influence on dehydrogenase activity, especially in the acid soil with the pH negatively influencing the enzymatic activities. The pig manure and pig manure digestate treatments showed positive response in the soil microbial biomass-C in the two soil types when compared to other co-amendments. Application of single use amendment application or in combination with biochar and ash as a means of waste management can enhance the N flow to meet up with crop needs, reduce GHG emissions and reduce potential agriculture’s negative environmental footprint.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Osama Elhag ◽  
Yuanpu Zhang ◽  
Xiaopeng Xiao ◽  
Minmin Cai ◽  
Longyu Zheng ◽  
...  

Black soldier fly (BSF) larvae are often exposed to organic waste which harbors abundant zoonotic pathogens. We investigated the ability of BSF larvae to inhibit the zoonotic pathogens naturally found in pig manure. The zoonotic pathogens populations were detected by using selective medium during the conversion. Results showed that the viability of the zoonotic pathogens in pig manure was significantly affected. After eight days of conversion, the Coliform populations were undetected, and Staphylococcus aureus and Salmonella spp. decreased significantly on the eighth day. Antimicrobial assays of the purified recombinant defensin-like peptide 4 (DLP4) showed that this peptide exhibits inhibitory activity against S. aureus, Salmonella enterica serovar typhimurium, and Escherichia coli in vitro. Bacteria BSF-CL and BSF-F were isolated from the larvae gut, and both inhibited the growth of S. aureus and E. coli, but Salmonella spp. was sensitive to the BSF-CL strain (but not to the BSF-F strain). The results from our experiments indicate that BSF larvae are capable of functionally inhibiting potential zoonotic pathogens in pig manure through a variety of mechanisms including antimicrobial peptides expression and the gut associate microorganisms. This study provides a theoretical basis for further study on the combined mechanism of BSF larvae immunity and its gut microbes against the zoonotic pathogens in pig manure.


2021 ◽  
Vol 14 (1) ◽  
pp. 438
Author(s):  
Václav Novák ◽  
Petr Šařec ◽  
Kateřina Křížová ◽  
Petr Novák ◽  
Oldřich Látal

This study was conducted to understand the long-term influence of biostimulator NeOsol in combination with different manure types on soil’s physical properties and crop status. NeOsol is a soil biostimulator that should stimulate the biological reactions of the soil profile and improve the soil’s physical and chemical properties. A six-year experiment was conducted with eight treatments: NPK, cattle manure, pig manure, poultry manure, and the same four treatments with the NeOsol added on top. The in situ sampling of soil properties provided data on unit draft (UD), bulk density (BD), and saturated hydraulic conductivity (SHC). Furthermore, remotely sensed data were analyzed to describe crop status via three selected vegetation indices (VI), and crop yields were assessed last. The variants treated with NeOsol demonstrated decreases in UD over time; BD, SHC, and VI did not significantly change. The impact on yield was significant and increased over time. When comparing the variants with manure application to those without one, the cattle manure led to significantly higher SHC; the pig manure led to significantly lower UD and BD but significantly higher SHC and yield; and the poultry manure led to significantly lower UD and BD but higher yield.


Sign in / Sign up

Export Citation Format

Share Document