seismic prediction
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 22)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 11 (20) ◽  
pp. 9596
Author(s):  
Davide Zaccagnino ◽  
Luciano Telesca ◽  
Carlo Doglioni

Seismic prediction was considered impossible, however, there are no reasons in theoretical physics that explicitly prevent this possibility. Therefore, it is quite likely that prediction is made stubbornly complicated by practical difficulties such as the quality of catalogs and data analysis. Earthquakes are sometimes forewarned by precursors, and other times they come unexpectedly; moreover, since no unique mechanism for nucleation was proven to exist, it is unlikely that single classical precursors (e.g., increasing seismicity, geochemical anomalies, geoelectric potentials) may ever be effective in predicting impending earthquakes. For this reason, understanding the physics driving the evolution of fault systems is a crucial task to fine-tune seismic prediction methods and for the mitigation of seismic risk. In this work, an innovative idea is inspected to establish the proximity to the critical breaking point. It is based on the mechanical response of faults to tidal perturbations, which is observed to change during the “seismic cycle”. This technique allows to identify different seismic patterns marking the fingerprints of progressive crustal weakening. Destabilization seems to arise from two different possible mechanisms compatible with the so called preslip patch, cascade models and with seismic quiescence. The first is featured by a decreasing susceptibility to stress perturbation, anomalous geodetic deformation, and seismic activity, while on the other hand, the second shows seismic quiescence and increasing responsiveness. The novelty of this article consists in highlighting not only the variations in responsiveness of faults to stress while reaching the critical point, but also how seismic occurrence changes over time as a function of instability. Temporal swings of correlation between tides and nucleated seismic energy reveal a complex mechanism for modulation of energy dissipation driven by stress variations, above all in the upper brittle crust. Some case studies taken from recent Greek seismicity are investigated.


2021 ◽  
pp. 295-327
Author(s):  
Yan Song ◽  
Xinmin Zhang ◽  
Shaobo Liu
Keyword(s):  

2020 ◽  
Vol 12 (1) ◽  
pp. 1383-1391
Author(s):  
Linjing Li ◽  
Qiqi Lyu ◽  
Fei Shang

AbstractShale lithofacies identification and prediction are of great importance for the successful shale gas and oil exploration. Based on the well and seismic fine calibration, extraction, and optimization of seismic attributes, root mean square (RMS) amplitude analysis is used to predict the spatial–temporal distribution of various lithofacies in the fifth organic-matter-rich interval, and the prediction results are confirmed by the logging data and geological background. The results indicate that in the early expansion system tract, dolomitic shale and calcareous shale were widely developed and argillaceous shale, silty shale, and argillaceous siltstone only developed in the periphery of deep depression. With the lake level rising, argillaceous shale and calcareous shale were well-developed, and argillaceous shale interbedded with silty shale or argillaceous siltstone developed in deep or semi-deep lake. In the late expansion system tract, argillaceous shale was widely deposited in the deepest sag; calcareous shale presented in eastern sag with belt distribution.


2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


Sign in / Sign up

Export Citation Format

Share Document