scholarly journals Comparison between electrical resistivity tomography and tunnel seismic prediction 303 methods for detecting the water zone ahead of the tunnel face: A case study

2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.

2014 ◽  
Vol 31 (2) ◽  
pp. 83-89 ◽  
Author(s):  
Maciej Maślakowski ◽  
Sebastian Kowalczyk ◽  
Radosław Mieszkowski ◽  
Kazimierz Józefiak

Abstract Geological and geotechnical engineering field tests, like structure drillings and dynamic (DPL, DPSH) or static probing (CPT), are considered for a fundamental source of information about soil and water environments. Since Eurocode 7 has been introduced, it has become more common to use also dilatometers (DMT) or pressure meters (PMT). Results obtained using all the mentioned tests are always of a discrete nature - information is provided in certain points in the field. However, they determine the basis for creating spatial models of geological structure and geotechnical condi- tions of a substratum. The range and number of investigations conducted (including drilling, probing and laboratory tests) influence precision, in which a geological structure is identified and thus, also affect probability of compatibility between spatial model and real geological conditions of a substratum. In the paper, results of non-invasive electrical resistivity tomography (ERT) method are presented, comprising 2-dimensional image of a soil medium resistance. Electrical resistance is a parameter that reflects diversification of a soil medium, considering its lithological aspect. In addition, when combined with drilling results, it can be used to accurate determination of boundaries between soil layers. Carrying out of ERT tests in the field during expressway construction contributed to identification of weak, low-strength soils like organic soils (peat, aggradated mud) and of soft consistency cohesive soils. These kinds of soil are the main cause for unacceptable deformations appearing in the new road engineering structure.


Author(s):  
Marco D. Vásconez-Maza ◽  
Pedro Martínez-Pagán ◽  
Hasan Aktarakçi ◽  
María C. García-Nieto ◽  
Marcos A. Martínez-Segura

This communication reports an improvement of the quality of the electrical data obtained from the application of electrical resistivity tomography method on archaeological studies. The electrical contact between ground and electrode enhances significantly by using carbomer-based gel during the electrical resistivity tomography measurements. Not only does the gel promote the conservation of the building surface under investigation, but it also virtually eliminates the necessity of conventional spike electrodes, which in many archaeological studies are inadequate or not permitted. Results evidenced an enhancement in the quality of the electrical data obtained in the order of thousands of units compared with those without using the carbomer-based gel. The potential and capabilities of this affordable gel make it appropriate to be applied to other geoelectrical studies beyond archaeological investigations. Moreover, it might solve corrosion issues on conventional spike electrodes, and electrical multicore cables usually provoked for added saltwater attempting to improve the electrical contact.


2017 ◽  
Vol 43 (4) ◽  
pp. 1962
Author(s):  
G. Vargemezis ◽  
P. Tsourlos ◽  
I. Mertzanides

The most common geophysical method widely used in hydrogeological surveys concerning deep investigations (150-300m of depth) is the resistivity method and particularly the Vertical Electric Sounding (VES) using the Schlumberger array. VES interpretations assume 1D geoelectrical structure yet it is obvious that such an interpretation assumption is not valid in many cases where 2D and 3D geological features exist. In such cases the application of geoelectrical techniques which can provide both vertical and lateral information concerning the resistivity variations is required. Techniques such as the electrical resistivity tomography, mostly used for the 2D and 3D geoelectrical mapping of near surface applications can be adapted to be used for larger investigation depths provided that modified equipment (viz. cables) is used. In the present paper, the application of deep electrical resistivity tomography (ERT) techniques is applied. ERT array of 21 electrodes, at a distance of 50 meters between them (total length 1000 meters) has been used in several studied areas located in the prefecture of Kavala (North Greece). In several cases near surface structure has been compared with VLF data. The aim of the survey was to study in detail the geological-hydrogeological structure the area of interest in order to suggest the best location for the construction of hydrowells with the most promising results. The 2D images of the geological structure down to the depth of at least 200 meters allowed the better understanding of the behaviour of layered geological formations, since in several cases resistivity values have been calibrated with data from pre-existing boreholes.


Sign in / Sign up

Export Citation Format

Share Document