patchy colloids
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 155 (4) ◽  
pp. 044903
Author(s):  
Rodrigo Braz Teixeira ◽  
Daniel de las Heras ◽  
José Maria Tavares ◽  
Margarida M. Telo da Gama

2021 ◽  
Vol 154 (13) ◽  
pp. 134901
Author(s):  
Yiwei Zhu ◽  
Walter G. Chapman

Soft Matter ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. 3513-3519
Author(s):  
Yurij V. Kalyuzhnyi ◽  
Ivo Nezbeda ◽  
Peter T. Cummings

Thermodynamic properties and structure of binary mixtures of patchy and spherical colloids are studied using a recently developed theory [Y. V. Kalyuzhnyi, et al., Soft Matter, 2020, 16, 3456].


2020 ◽  
Vol 21 (22) ◽  
pp. 8621
Author(s):  
Carina Karner ◽  
Felix Müller ◽  
Emanuela Bianchi

Non-spherical colloids provided with well-defined bonding sites—often referred to as patches—are increasingly attracting the attention of materials scientists due to their ability to spontaneously assemble into tunable surface structures. The emergence of two-dimensional patterns with well-defined architectures is often controlled by the properties of the self-assembling building blocks, which can be either colloidal particles at the nano- and micro-scale or even molecules and macromolecules. In particular, the interplay between the particle shape and the patch topology gives rise to a plethora of tilings, from close-packed to porous monolayers with pores of tunable shapes and sizes. The control over the resulting surface structures is provided by the directionality of the bonding mechanism, which mostly relies on the selective nature of the patches. In the present contribution, we investigate the effect of the patch size on the assembly of a class of anisotropic patchy colloids—namely, rhombic platelets with four identical patches placed in different arrangements along the particle edges. Larger patches are expected to enhance the bond flexibility, while simultaneously reducing the bond selectivity as the single bond per patch condition—which would guarantee a straightforward mapping between local bonding arrangements and long-range pattern formation—is not always enforced. We find that the non-trivial interplay between the patch size and the patch position can either promote a parallel particle arrangement with respect to a non-parallel bonding scenario or give rise to a variety a bonded patterns, which destroy the order of the tilings. We rationalize the occurrence of these two different regimes in terms of single versus multiple bonds between pairs of particles and/or patches.


Sign in / Sign up

Export Citation Format

Share Document