modified conjugate gradient method
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ahmad Alhawarat ◽  
Ghaliah Alhamzi ◽  
Ibitsam Masmali ◽  
Zabidin Salleh

The conjugate gradient method is a useful method to solve large-scale unconstrained optimisation problems and to be used in some applications in several fields such as engineering, medical science, image restorations, neural network, and many others. The main benefit of the conjugate gradient method is not using the second derivative or its approximation, such as Newton’s method or its approximation. Moreover, the algorithm of the conjugate gradient method is simple and easy to apply. This study proposes a new modified conjugate gradient method that contains four terms depending on popular two- and three-term conjugate gradient methods. The new algorithm satisfies the descent condition. In addition, the new CG algorithm possesses the convergence property. In the numerical results part, we compare the new algorithm with famous methods such as CG-Descent. We conclude from numerical results that the new algorithm is more efficient than other popular CG methods such as CG-Descent 6.8 in terms of number of function evaluations, number of gradient evaluations, number of iterations, and CPU time.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongbo Guan ◽  
Sheng Wang

In this paper, we propose a modified Polak–Ribière–Polyak (PRP) conjugate gradient method for solving large-scale nonlinear equations. Under weaker conditions, we show that the proposed method is globally convergent. We also carry out some numerical experiments to test the proposed method. The results show that the proposed method is efficient and stable.


2020 ◽  
Vol 3 (1) ◽  
pp. 43-49
Author(s):  
M K Dauda

In this study, a fully derivative-free method for solving large scale nonlinear systems of equations via memoryless DFP update is presented. The new proposed method is an enhanced DFP (Davidon-FletcherPowell) update which is matrix and derivative free thereby require low memory storage. Under suitable conditions, the proposed method converges globally. Numerical comparisons using a set of large-scale test problems showed that the proposed method is efficient.


Sign in / Sign up

Export Citation Format

Share Document