northwestern tatar strait
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 201 (3) ◽  
pp. 533-546
Author(s):  
P. A. Dulenina ◽  
A. A. Dulenin

Settlements of yesso scallop Mizuhopecten yessoensis in the northwestern Tatar Strait (within the waters of Khabarovsk Region) are considered on the data of scuba (< 20 m depth) and dredge (> 20 m depth) surveys conducted in 2001–2018. To 2018, only two settlements remain in this area from 9–12 ones in 2010–2014; both remained settlements have no commercial value. Trend to decreasing of the settlements density is shown: the mean density was 3.0 ind./m2 in 2001, 0.20 ind./m2 in 2010, and 0.0005 ind./m2 in 2018. Commercially valuable scallops with the shell height > 120 mm prevailed in the settlements (86–100 %), whereas juveniles were rare or absent (1.6 %, on average) in all years of surveys. CPUE decreased from 200 kg/diver/hour in 2001–2003 to 10 kg/diver/hour in 2018. These changes are obviously reasoned by overexploitation of the population using dredging and scuba gathering. Total commercial stock of yesso scallop dropped to the minimal value in 2018: 200 t, that was in 4.5 times lower than the established limit. Thus, 5 years ban is established for M. yessoensis landing in the area.


2020 ◽  
Vol 200 (3) ◽  
pp. 767-788
Author(s):  
A. A. Dulenin

Dominant species are identified at infracenotic level for aquatic vegetation in the sublittoral zone of the northwestern Tatar Strait (Japan Sea) on the data collected in 2010–2019. Seven different methods of the identifying are considered based both on visual qualitative and quantitative assessments and on instrumental estimations of abundance for 44 macrophyte species. Depending on applied method, 19–25 species (7–22 % of total number of species) are identified as the dominants, including 10 species identified by all methods. List of these 10 species is defined as the core of vegetation that determines its general properties and the species are determined as unconditional dominants, in opposite to other ones identified by at least one method — conditional dominants. All macrophyte species in areas of low abundance do not meet the dominance criteria. All lists of dominants, including those based on visual estimates of projective cover and its physiognomy, are statistically indistinguishable (p = 0.55–0.92, by pairs of lists) and highly similar (Bray-Curtis index 0.80–0.95, Jacquard index 0.65–0.87), with one exception for the list identified by the method of ranking for the average projective cover (indices of similarity with other lists: 0.68–0.71 by Bray-Curtis, 0.46–0.56 by Jacquard). This visual method of projective cover assessment is combined with the procedure of species dividing to dominant and non-dominant groups. Quantitative criteria of projective cover and biomass, by species (thresholds 0.2 and 1.0 kg/m3, respectively) are used for dividing on cenotic and landscape levels and ranking with Brotskaya-Zenkevich index and its modification for projective cover is used for dividing on regional level. Visual methods are available for verification, but the lists of dominants based on visual and instrumental assessments should be mutually verified.


2020 ◽  
Vol 200 (3) ◽  
pp. 635-655
Author(s):  
Р. A. Dulenina ◽  
A. A. Dulenin

General patterns of bivalves distribution by depth in the northwestern Tatar Strait (within Khabarovsk region) are analyzed on the data of 384 trawl, 573 drag, and 1177 diving stations during research surveys in 2003–2016 where the samples were collected with commonly accepted methods. Depths from 0 to 600 m were surveyed. Besides, scientific publications and archival materials related to this area were taken into account. The species richness (y) decreases with depth (x) exponentially from 51 species at 1–20 m to 3 species at 400–600 m that could be approximated satisfactory by the equation y = 31.799. e–0.0502x (r2 = 0.89). Sublittoral and bathial faunas can be separated by cluster analysis of special composition in the depth range 0–150 m and 150–600 m, respectively, with similarity of 0.11 between them. Within these boundaries, 5 local faunas are distinguished: I (< 2 m, the surf zone at the upper boundary of the sublittoral zone), II (2–30 m, the upper sublittoral zone), III (30–150 m, the lower sublittoral zone), IV (150–400 m, the transitional zone) and V (400–600 m, the upper bathyal zone), with similarity between them from 0.14 to 0.36. The upper sublittoral zone has the maximum species richness — 64 species and is the habitat for a «core» of Bivalve fauna with almost ⅔ of its species, preserving the ratio of the main biogeographic groups typical for the researched area. Commercial fishery of scallop Mizuhopecten yessoensis exploited this zone mainly and now is banned to prevent reduction of its stock. Other commercial bivalves, as Callista brevisiphonata, Serripes laperousii, Keenocardium californiense, and Mercenaria stimpsoni, which commercial stocks are estimated in order of 105 t, are also concentrated in this zone but are not landed currently. Portion of moderately cold-water species (wide-boreal and low-boreal) increases and portion of warm-water species (subtropical-boreal and subtropical-low-boreal) decreases with depth, with the slope coefficients of the regressions α = 9.2 ± 4.1 (p = 0.11) and α = –9.6 ± 2.3 (p = 0.03), respectively. The coldwater species are absent in the surf and upper bathyal zones but their portion in other zones is 20–26 %. Rather high portion of boreal-arctic species on shallow depths reflects relative severity of the northwestern Tatar Strait that is the most cold-water area of the Japan Sea. The warm-water species are completely absent in the upper bathyal zone, i.e. at the depths > 400 m. On the other hand, portion of banal species increases and portion of specific species decreases with depth, also portion of rare species increases and portion of mass species decreases with depth, with the slope coefficients α = 9.10 ± 0.49 (p = 0.0003) and α = –4.5 ± 2.5 (p = 0.01), respectively. Vertical distribution of frequent species is rather uniform: 33–57 %. These patterns of the species distribution by zones almost do not change spatially: distribution of different biogeographic groups of species in three coastal areas (47–49о N, 49–51о N, and > 51о N) has no statistically significant differences. Distribution of species richness and composition by depth ranges relates to ecotopic variation (74 % of diversity), to the degree of exploration (22 %), and to the influence of such complex factor as a depth (4 %). Further faunistic studies are recommended in the most diverse areas, as bays, harbours, and capes vicinities with variable grounds and submarine vegetation, in all available depth ranges. Such surveys can provide faunistically representative information on the species wealth. The list of Bivalve mollusk species for the northwestern Tatar Strait can be enlarged possibly in 1/5 if detailed studies of their fauna will be conducted. The fauna on great depths is the most underexplored. The total expected number of bivalve species in this area is at least 120.


2020 ◽  
Vol 200 (3) ◽  
pp. 586-604
Author(s):  
P. A. Dulenina ◽  
E. I. Ustinova ◽  
A. A. Dulenin

Data on commercial catches of japanese flying squid Todarodes pacificus in the northwestern Tatar Strait in 2003–2019 are analyzed. To assess the resours status in the study area, the relative number (individuals per jigger winch per hour) and biomass (kilograms per vessel per day) marks recognized to be the most applicable winch per hour or the catch in kg per vessel per day. The average CPUE value was 35.6 ± 3.6 ind./winch/hour; increasing trend of CPUE is observed (α = 1.5 ± 0.6, r2 = 0.3, p < 0.03). The squid abundance decreased slightly in the last 2 years, with CPUE decreasing to 28 ind./winch/hour in 2019, though the squid biomass was relatively stable (average CPUE 582.0 ± 45.8 kg/vessel/day) — decreased number of caught individuals was compensated by individual body weight increasing. Long-term tendency to the body weight increasing was noted: the average body weight was 205.0 ± 4.0 g in 2004, 256.0 ± 3.5 g in 2012, and 297.0 ± 6.3 g in 2019. Possible climate change influence on the squid population was discussed. Because of warming in the reproductive area of T. pacificus in the southern Japan Sea, SST in the spawning period reached 20–25 оC and exceeded the value optimal for reproduction and larvae development (15–23 оC), so the squid abundance decreased. On the contrary, in the northern Japan Sea (in the Tatar Strait) the warming caused better conditions for the squid feeding: the higher zooplankton biomass in this area was observed under SST 13–18 оC that is reached every year recently. On the other hand, the Tsushima Current intensifying promoted active migrations of T. pacificus to the northwestern Tatar Strait. These factors of climate warming ensure favorable environments for northward migrations of T. pacificus and forming of dense feeding aggregations in the northwestern Tatar Strait that allows to expect good conditions for the squid fishery in this area in the nearest future.


2019 ◽  
Vol 199 ◽  
pp. 3-18
Author(s):  
P. A. Dulenina ◽  
N. V. Kolpakov

Dredgе survey (177 stations) was conducted in the northwestern Tatar Strait (northward from 48° N) at the depths 14–82 m in summer 2018 (from July 21 to August 7). In the dredge catches, 76 species and taxa of benthic invertebrates are recorded, including 42 epibenthic species, mainly Ophiura sarsi, Evasterias echinosoma, Strongylocentrotus pallidus, Paralithodes brevipes, Cucumaria japonica, P. camtschaticus, Mizuhopecten yessoensis, and S. intermedius. The areas of their aggregations are determined. The largest area was occupied by the settlements of polyphagous S. pallidus (5100 km22 at the depths 30–60 m). Specific biomass of epibenthos is calculated, its average value within the surveyed area was 21.5 ± 2.0 g/m2. Depth ranges of the species domination are defined. The dominant species changed with latitude: in the southern part of the survey, Paralithodes camtschaticus dominated with the biomass of 5.1 ± 4.4 g/m2 in the upper 20 m layer (48–49° N), replaced at the depth of 20–30 m by P. brevipes (22.2 ± 14.2 g/m2 between 48–49° N) or C. japonica (28.2 ± 3.0 g/m2 between 49–50° N), both species changed deeper to S. pallidus (4.3 ± 1.1 g/m2); in the northern part of the survey (50–51° N), S. intermedius dominated in the upper 30 m layer with the biomass of 14.7 ± 9.5 g/m2, Mizuhopecten yessoensis (9.7 ± 6.2 g/m2 ) and Evasterias echinosoma (5.1 ± 1,0 g/m2 ) prevailed in the depth range of 30–40 m and were replaced by S. pallidus (18.0 ± 9.5 g/m2) below 50 m; in the northernmost shallow tip of the Strait, Ophiura sarsi dominated absolutely with the biomass of 13.0 ± 1.1 g/m2) in the whole depth range down to 30 m. The greatest species richness and abundance of epibenthos were observed at the depths not exceeding 40 m. Statistically significant decreasing of quantitative parameters of the epibenthos with the depth is observed because of the bottom temperature and topical diversity declination with depth. However, environmental conditions have no significant impact on latitudinal distribution of abundance, wealth and species diversity of the epifauna in the surveyed area. The grouping of epibenthos with specific species structure that could be classified as the circumlittoral one is defined in the upper shelf zone in the northernmost area with the depth < 30 m (somewhere < 40 m).


Sign in / Sign up

Export Citation Format

Share Document