leader process
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Yanhui ◽  
Fan Xiangpeng ◽  
Wang Tuo ◽  
Min Yingchang ◽  
Liu Yali ◽  
...  

In this work, we studied the waveforms of all lightning discharges from about 15 min. Eighty-three percent of all lightning discharges contain particular waveforms called regular pulse bursts (RPBs), which have regular microsecond-scale electric or magnetic field pulses. Maximum proportion of RPBs occur in middle or rear of lightning discharges. Prior to or after RPBs, there is always a chaotic pulse period. The analysis indicated that RPBs are caused by a secondary discharge in the fractured old breakdown channel, likeness to dart-stepped leader occuring in negative cloud-to-ground discharge (-CG). Four types of RPBs, namely, category of normal RPBs, category of back RPBs, category of symmetric RPBs, and category of reversal RPBs, were sorted in the light of the evolution of the pulse amplitude, interval between neighboring pulses and pulse polarity. In addition, the difference between normal RPBs and back RPBs was considered to be caused by the distance between neighboring charge pockets and the magnitude of the charge in every charge pocket. The symmetric RPBs were considered to be caused by a discharge channel with a large central charge area. Reversal RPBs were considered to be caused by a bending channel or superposition of two or more RPBs. We located some RPBs in a typical intra-cloud flash (IC) in three-dimensional. The analysis showed that the developing velocity of RPBs ranged from approximately 1.2 × 106 m/s to 3.0 × 106 m/s, which slower less than both of the dart leader or dart-stepped leader process from previous studies. And we found it is several meters to dozens of meters that the lengths range of discharge step which between two adjacent pulses.


2020 ◽  
pp. 107-113
Author(s):  
A. Heri Iswanto
Keyword(s):  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2636 ◽  
Author(s):  
Wahab Ali Shah ◽  
Hengxin He ◽  
Junjia He ◽  
Yongchao Yang

Investigation of positive streamer-leader propagation under slow front impulse voltages can play an important role in the quantitative research of positive upward lightning. In this work, we performed a large-scale investigation into leader development in a 10-m rod–plane gap under a long front positive impulse. To describe the leader propagation under slow front impulse voltages, we recorded the leader propagation with a high-speed charge coupled device (CCD) camera. It is important to figure out this phenomenon to deepen our understanding of leader discharge. The observation results showed that the leader mechanism is a very complex physical phenomenon; it could be categorized into two types of leader process, namely, continuous and the discontinuous leader streamer-leader propagation. Furthermore, we studied the continuous leader development parameters, including two-dimensional (2-D) leader length, injected charge, and final jump stage, as well as leader velocity for rod–plane configuration. We observed that the discontinuous leader makes an important contribution to the appearance of channel re-illuminations of the positive leader. To clarify the above doubts under long front cases, we carried out extensive experiments in this study. The comparative study shows better results in terms of standard switch impulse and long front positive impulse. Finally, the results are presented with a view toward improving our understanding of propagation mechanisms related to restrike phenomena, which are rarely reported.


2017 ◽  
pp. 203-260
Author(s):  
E.M. Bazelyan ◽  
Yu. P. Raizer
Keyword(s):  

Author(s):  
Y. Takayanagi ◽  
M. Akita ◽  
Y. Nakamura ◽  
S. Yoshida ◽  
T. Morimoto ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document