Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors

Author(s):  
Zifei Xu ◽  
Xuan Mei ◽  
Xinyu Wang ◽  
Minnan Yue ◽  
Jiangtao Jin ◽  
...  
Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


Author(s):  
Chang Liu ◽  
Wenbai Chen

In order to solve the problems of high data dimension and insufficient consideration of time series correlation information, a multi-scale deep convolutional neural network and long-short-term memory (MSDCNN-LSTM) hybrid model is proposed for remaining useful life (RUL) of equipments. First, the sensor data is processed through normalization and sliding time window to obtain input samples; then multi-scale deep convolutional neural network (MSDCNN) is used to capture detailed spatial features, at the same time, time-dependent features are extracted for effective prediction combining with long short-term memory (LSTM). Experiments on simulation dataset of commercial modular aero-propulsion system show that, compared with other state-of-the-art methods, the prediction method proposed in this paper has achieved better RUL prediction results, especially for the prediction of the life of equipment with complex failure modes and operating conditions. The effect is obvious. It can be seen that the prediction method proposed in this paper is feasible and effective.


Author(s):  
Funa Zhou ◽  
Zhiqiang Zhang ◽  
Danmin Chen

Analysis of one-dimensional vibration signals is the most common method used for safety analysis and health monitoring of rotary machines. How to effectively extract features involved in one-dimensional sequence data is crucial for the accuracy of real-time fault diagnosis. This article aims to develop more effective means of extracting useful features potentially involved in one-dimensional vibration signals. First, an improved parallel long short-term memory called parallel long short-term memory with peephole is designed by adding a peephole connection before each forget gate to prevent useless information transferring in the cell. It can not only solve the memory bottleneck problem of traditional long short-term memory for long sequence but also can make full use of all possible information helpful for feature extraction. Second, a fusion network with new training mechanism is designed to fuse features extracted from parallel long short-term memory with peephole and convolutional neural network, respectively. The fusion network can incorporate two-dimensional screenshot image into comprehensive feature extraction. It can provide more accurate fault diagnosis result since two-dimensional screenshot image is another form of expression for one-dimensional vibration sequence involving additional trend and locality information. Finally, real-time two-dimensional screenshot image is fed into convolutional neural network to secure a real-time online diagnosis which is the primary requirement of the engineers in health monitoring. Validity of the proposed method is verified by fault diagnosis for rolling bearing and gearbox.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haibin Sun ◽  
Shichao Zhao

Condition monitoring and fault diagnosis of the bearing are essential for the smooth operation of rotating machinery. In this paper, an end-to-end intelligent fault diagnosis method for bearing combining one-dimensional convolutional neural network with long short-term memory network (1DCNN-LSTM) is proposed for the deficiencies of existing fault diagnosis methods. First, the proposed method takes one-dimensional fault data directly as input. Second, one-dimensional convolutional neural network (1DCNN) is used for self-adaptively extracting robust features from the original bearing signal, and more features are extracted while ensuring the validity and saliency of the extracted features by combining maximum pooling and average pooling layers to downsample features. Then, long short-term memory network (LSTM) is used to learn the temporal dependencies among features. At last, fault identification is achieved. 1DCNN-LSTM does not require any manual feature extraction, and the errors caused by reliance on expert experience and incomplete information in traditional feature extraction methods are avoided. The results show that the proposed classifier with good generalization performance not only diagnoses the category of fault quickly and accurately under different load conditions but also achieves an average fault identification accuracy of 99.95%. For its powerful learning abilities, this method can also be applied to the bearing fault diagnosis of rotating machinery in many fields.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dazhang You ◽  
Linbo Chen ◽  
Fei Liu ◽  
YePeng Zhang ◽  
Wei Shang ◽  
...  

The traditional bearing fault diagnosis methods have complex operation processes and poor generalization ability, while the diagnosis accuracy of the existing intelligent diagnosis methods needs to be further improved. Therefore, a novel fault diagnosis approach named CNN-BLSTM for bearing is presented based on convolutional neural network (CNN) and bidirectional long short-term memory (BLSTM) in this paper. This method directly takes the collected one-dimensional raw vibration signal as input and adaptively extracts the feature information through CNN. Then, the BLSTM is used to fuse the extracted features to acquire the failure information sufficiently and prevent the model from overfitting. Finally, two different experimental datasets are used to verify the effectiveness of the method. The experimental results show that the proposed CNN-BLSTM model can accurately diagnose the fault category of bearings. It has the advantages of rapidity, stability, antinoise, and strong generalization.


Sign in / Sign up

Export Citation Format

Share Document