fingerprint alignment
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 19 (1) ◽  
pp. 707-737
Author(s):  
Xueyi Ye ◽  
◽  
Yuzhong Shen ◽  
Maosheng Zeng ◽  
Yirui Liu ◽  
...  

<abstract> <p>Singular point detection is a primary step in fingerprint recognition, especially for fingerprint alignment and classification. But in present there are still some problems and challenges such as more false-positive singular points or inaccurate reference point localization. This paper proposes an accurate core point localization method based on spatial domain features of fingerprint images from a completely different viewpoint to improve the fingerprint core point displacement problem of singular point detection. The method first defines new fingerprint features, called furcation and confluence, to represent specific ridge/valley distribution in a core point area, and uses them to extract the innermost Curve of ridges. The summit of this Curve is regarded as the localization result. Furthermore, an approach for removing false Furcation and Confluence based on their correlations is developed to enhance the method robustness. Experimental results show that the proposed method achieves satisfactory core localization accuracy in a large number of samples.</p> </abstract>


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6643
Author(s):  
Amorn Slosse ◽  
Filip Van Durme ◽  
Nele Samyn ◽  
Debby Mangelings ◽  
Yvan Vander Heyden

Cannabis sativa L. is widely used as recreational illegal drugs. Illicit Cannabis profiling, comparing seized samples, is challenging due to natural Cannabis heterogeneity. The aim of this study was to use GC–FID and GC–MS herbal fingerprints for intra (within)- and inter (between)-location variability evaluation. This study focused on finding an acceptable threshold to link seized samples. Through Pearson correlation-coefficient calculations between intra-location samples, ‘linked’ thresholds were derived using 95% and 99% confidence limits. False negative (FN) and false positive (FP) error rate calculations, aiming at obtaining the lowest possible FP value, were performed for different data pre-treatments. Fingerprint-alignment parameters were optimized using Automated Correlation-Optimized Warping (ACOW) or Design of Experiments (DoE), which presented similar results. Hence, ACOW data, as reference, showed 54% and 65% FP values (95 and 99% confidence, respectively). An additional fourth root normalization pre-treatment provided the best results for both the GC–FID and GC–MS datasets. For GC–FID, which showed the best improved FP error rate, 54 and 65% FP for the reference data decreased to 24 and 32%, respectively, after fourth root transformation. Cross-validation showed FP values similar as the entire calibration set, indicating the representativeness of the thresholds. A noteworthy improvement in discrimination between seized Cannabis samples could be concluded.


2017 ◽  
pp. 15-40
Author(s):  
David Zhang ◽  
Guangming Lu ◽  
Lei Zhang

2014 ◽  
Vol 103 (8) ◽  
pp. 1-8
Author(s):  
Cynthia S.Mlambo ◽  
Mmamelatelo E. Mathekga ◽  
Fulufhelo V. Nelwamondo

Sign in / Sign up

Export Citation Format

Share Document