scholarly journals A New Blind Fingerprint Alignment Algorithm used in Biometric Encryption

Author(s):  
Xinglong Zhang ◽  
Quan Feng ◽  
Kang He
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongyi Zhang ◽  
Xiaowei Zhan ◽  
Bo Li

AbstractSimilarity in T-cell receptor (TCR) sequences implies shared antigen specificity between receptors, and could be used to discover novel therapeutic targets. However, existing methods that cluster T-cell receptor sequences by similarity are computationally inefficient, making them impractical to use on the ever-expanding datasets of the immune repertoire. Here, we developed GIANA (Geometric Isometry-based TCR AligNment Algorithm) a computationally efficient tool for this task that provides the same level of clustering specificity as TCRdist at 600 times its speed, and without sacrificing accuracy. GIANA also allows the rapid query of large reference cohorts within minutes. Using GIANA to cluster large-scale TCR datasets provides candidate disease-specific receptors, and provides a new solution to repertoire classification. Querying unseen TCR-seq samples against an existing reference differentiates samples from patients across various cohorts associated with cancer, infectious and autoimmune disease. Our results demonstrate how GIANA could be used as the basis for a TCR-based non-invasive multi-disease diagnostic platform.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Sang-Won Kim ◽  
Kee-Cheon Kim

In this paper, we propose a system that can recognize traffic types without prior knowledge of static features such as protocol header information by combining protocol analysis based on an ecological sequence alignment algorithm in a bioinformatics and fuzzy inference system. The algorithm proposed in this paper obtained up to a 91% level of performance at a similar level to several existing algorithms in experiments using datasets containing various types of traffic. In addition, it showed an excellent accuracy of 82.5% or more even under severe conditions that lowered the amount of data to a level of at least 40% or only included data in the middle of the traffic. This shows that the problem of dependence on initial data that frequently occurs in existing machine learning and deep learning-based traffic classification algorithms does not appear in the proposed algorithm. Furthermore, based on the ability to directly extract traffic characteristics without being dependent on static field values, it has secured the ability to respond with a small number of data by taking advantage of the flexibility of the membership function of the fuzzy inference engine. Through this, the applicability to low-power and low-performance environments such as IoT networks was confirmed. In this paper, we describe in detail the theoretical background for constructing such an algorithm and relevant experiments and considerations for actual verification.


2013 ◽  
Vol 415 ◽  
pp. 143-148
Author(s):  
Li Hua Zhu ◽  
Xiang Hong Cheng

The design of an improved alignment method of SINS on a swaying base is presented in this paper. FIR filter is taken to decrease the impact caused by the lever arm effect. And the system also encompasses the online estimation of gyroscopes’ drift with Kalman filter in order to do the compensation, and the inertial freezing alignment algorithm which helps to resolve the attitude matrix with respect to its fast and robust property to provide the mathematical platform for the vehicle. Simulation results show that the proposed method is efficient for the initial alignment of the swaying base navigation system.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Naeem Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Anzar Mahmood ◽  
Sohail Razzaq ◽  
...  

Face recognition aims to establish the identity of a person based on facial characteristics and is a challenging problem due to complex nature of the facial manifold. A wide range of face recognition applications are based on classification techniques and a class label is assigned to the test image that belongs to the unknown class. In this paper, a pose invariant deeply learned multiview 3D face recognition approach is proposed and aims to address two problems: face alignment and face recognition through identification and verification setups. The proposed alignment algorithm is capable of handling frontal as well as profile face images. It employs a nose tip heuristic based pose learning approach to estimate acquisition pose of the face followed by coarse to fine nose tip alignment using L2 norm minimization. The whole face is then aligned through transformation using knowledge learned from nose tip alignment. Inspired by the intrinsic facial symmetry of the Left Half Face (LHF) and Right Half Face (RHF), Deeply learned (d) Multi-View Average Half Face (d-MVAHF) features are employed for face identification using deep convolutional neural network (dCNN). For face verification d-MVAHF-Support Vector Machine (d-MVAHF-SVM) approach is employed. The performance of the proposed methodology is demonstrated through extensive experiments performed on four databases: GavabDB, Bosphorus, UMB-DB, and FRGC v2.0. The results show that the proposed approach yields superior performance as compared to existing state-of-the-art methods.


2010 ◽  
Vol 11 (Suppl 1) ◽  
pp. S34 ◽  
Author(s):  
Zaixin Lu ◽  
Zhiyu Zhao ◽  
Bin Fu

Sign in / Sign up

Export Citation Format

Share Document