protein tertiary structure prediction
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Jian Liu ◽  
Tianqi Wu ◽  
Zhiye Guo ◽  
Jie Hou ◽  
Jianlin Cheng

Substantial progresses in protein structure prediction have been made by utilizing deep-learning and residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system in three main aspects: (1) a new deep learning based protein inter-residue distance predictor (DeepDist) to improve template-free (ab initio) tertiary structure prediction, (2) an enhanced template-based tertiary structure prediction method, and (3) distance-based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked 7th out of 146 predictors in protein tertiary structure prediction and ranked 3rd out of 136 predictors in inter-domain structure predic-tion. The results of MULTICOM demonstrate that the template-free modeling based on deep learning and residue-residue distance prediction can predict the correct topology for almost all template-based modeling targets and a majority of hard targets (template-free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. The performance of template-free tertiary structure prediction largely depends on the accuracy of distance pre-dictions that is closely related to the quality of multiple sequence alignments. The structural model quality assessment works reasonably well on targets for which a sufficient number of good models can be predicted, but may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed.


2021 ◽  
Author(s):  
Jian Liu ◽  
Tianqi Wu ◽  
Zhiye Guo ◽  
Jie Hou ◽  
Jianlin Cheng

Substantial progresses in protein structure prediction have been made by utilizing deep-learning and residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system in the three main aspects: (1) a new deep-learning based protein inter-residue distance predictor (DeepDist) to improve template-free (ab initio) tertiary structure prediction, (2) an enhanced template-based tertiary structure prediction method, and (3) distance-based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked 7th out of 146 predictors in protein tertiary structure prediction and ranked 3rd out of 136 predictors in inter-domain structure prediction. The results of MULTICOM demonstrate that the template-free modeling based on deep learning and residue-residue distance prediction can predict the correct topology for almost all template-based modeling targets and a majority of hard targets (template-free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. The performance of template-free tertiary structure prediction largely depends on the accuracy of distance predictions that is closely related to the quality of multiple sequence alignments. The structural model quality assessment works reasonably well on targets for which a sufficient number of good models can be predicted, but may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S11) ◽  
Author(s):  
Haicang Zhang ◽  
Yufeng Shen

Abstract Background Accurate prediction of protein structure is fundamentally important to understand biological function of proteins. Template-based modeling, including protein threading and homology modeling, is a popular method for protein tertiary structure prediction. However, accurate template-query alignment and template selection are still very challenging, especially for the proteins with only distant homologs available. Results We propose a new template-based modelling method called ThreaderAI to improve protein tertiary structure prediction. ThreaderAI formulates the task of aligning query sequence with template as the classical pixel classification problem in computer vision and naturally applies deep residual neural network in prediction. ThreaderAI first employs deep learning to predict residue-residue aligning probability matrix by integrating sequence profile, predicted sequential structural features, and predicted residue-residue contacts, and then builds template-query alignment by applying a dynamic programming algorithm on the probability matrix. We evaluated our methods both in generating accurate template-query alignment and protein threading. Experimental results show that ThreaderAI outperforms currently popular template-based modelling methods HHpred, CNFpred, and the latest contact-assisted method CEthreader, especially on the proteins that do not have close homologs with known structures. In particular, in terms of alignment accuracy measured with TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56, 13, and 11%, respectively, on template-query pairs at the similarity of fold level from SCOPe data. And on CASP13’s TBM-hard data, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16, 9 and 8% in terms of TM-score, respectively. Conclusions These results demonstrate that with the help of deep learning, ThreaderAI can significantly improve the accuracy of template-based structure prediction, especially for distant-homology proteins.


2020 ◽  
Author(s):  
Haicang Zhang ◽  
Yufeng Shen

AbstractAccurate prediction of protein structure is fundamentally important to understand biological function of proteins. Template-based modeling, including protein threading and homology modeling, is a popular method for protein tertiary structure prediction. However, accurate template-query alignment and template selection are still very challenging, especially for the proteins with only distant homologs available. We propose a new template-based modelling method called ThreaderAI to improve protein tertiary structure prediction. ThreaderAI formulates the task of aligning query sequence with template as the classical pixel classification problem in computer vision and naturally applies deep residual neural network in prediction. ThreaderAI first employs deep learning to predict residue-residue aligning probability matrix by integrating sequence profile, predicted sequential structural features, and predicted residueresidue contacts, and then builds template-query alignment by applying a dynamic programming algorithm on the probability matrix. We evaluated our methods both in generating accurate template-query alignment and protein threading. Experimental results show that ThreaderAI outperforms currently popular template-based modelling methods HHpred, CNFpred, and the latest contact-assisted method CEthreader, especially on the proteins that do not have close homologs with known structures. In particular, in terms of alignment accuracy measured with TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56%, 13%, and 11%, respectively, on template-query pairs at the similarity of fold level from SCOPe data. And on CASP13’s TBM-hard data, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16%, 9% and 8% in terms of TM-score, respectively. These results demonstrate that with the help of deep learning, ThreaderAI can significantly improve the accuracy of template-based structure prediction, especially for distant-homology proteins.Availabilityhttps://github.com/ShenLab/ThreaderAI


2019 ◽  
Vol 17 (02) ◽  
pp. 1950007
Author(s):  
Farzad Peyravi ◽  
Alimohammad Latif ◽  
Seyed Mohammad Moshtaghioun

The prediction of protein structure from its amino acid sequence is one of the most prominent problems in computational biology. The biological function of a protein depends on its tertiary structure which is determined by its amino acid sequence via the process of protein folding. We propose a novel fold recognition method for protein tertiary structure prediction based on a hidden Markov model and 3D coordinates of amino acid residues. The method introduces states based on the basis vectors in Bravais cubic lattices to learn the path of amino acids of the proteins of each fold. Three hidden Markov models are considered based on simple cubic, body-centered cubic (BCC) and face-centered cubic (FCC) lattices. A 10-fold cross validation was performed on a set of 42 fold SCOP dataset. The proposed composite methodology is compared to fold recognition methods which have HMM as base of their algorithms having approaches on only amino acid sequence or secondary structure. The accuracy of proposed model based on face-centered cubic lattices is quite better in comparison with SAM, 3-HMM optimized and Markov chain optimized in overall experiment. The huge data of 3D space help the model to have greater performance in comparison to methods which use only primary structures or only secondary structures.


Sign in / Sign up

Export Citation Format

Share Document